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GUEST EDITOR

Editorial on the Special Issue on "Signal Processing in Acoustics"

Among the many facets of research in acoustics, the use of signal processing has been key
in advancing both theory and applications of acoustics. The Journal of Acoustical Society of
America has published many papers over the years that reflect the depth and diversity of
signal processing techniques applied to acoustics. This special issue of the journal on the topic
of "Signal Processing in Acoustics" is an endeavour to showcase the advanced research work
being done in this field through a sample of papers from prominent researchers in the country
and their research groups. A total of 8 papers are presented that provide insight into different
signal processing techniques as applied to several areas of acoustics as follows: Audio
Engineering (1), Animal Bioacoustics (1), Biomedical Acoustics (1), Signal Processing for Acoustic
Source Detection (1), Speech Communication (3), and Underwater Acoustic Communication
(1).

The paper on "Spatial Multi-Zone Sound Field Reproduction Using Differential Phase
Constraint" presents a signal processing method to accurately reproduce the sound field in
multiple zones for creating an immersive audio experience using an array of several
loudspeakers. The synthesized sound field is compared with previous methods from the research
literature. The next paper titled "Multi-component Oscillatory Model based Classification of
Heart Sounds" describes a biomedical application of signal processing in which a multi-
component oscillatory model is used for modeling the non-stationary heart sounds from
phonocardiogram. Features are derived from the models that are then used for classifying the
different heart sounds as normal or abnormal. The performance of different classifiers is
compared amongst each other for the derived features on a standard database to draw inferences.

The next paper titled "An Overview of Techniques Developed for Bio-Sonar Characterization
and Census of Ganges River Dolphin, India's National Aquatic Animal," presents the research
work done to develop signal processing methods and hydrophone array systems for long-term
passive acoustic monitoring of Ganges river dolphins using their echolocation acoustic signals.
The paper also describes the development of an integrated visual and acoustic system to detect
and find range of dolphins in the Ganges river. It describes how the system can be used for
acoustics based census purposes that can be an alternative to a conventional human observer
based method.

In the paper "Analysis of Source Signal and Vocal Tract for Detection of Out-of-breath
Speech," a study of out-of-breath speech that results from physical activity is reported. The
effect of this stressed condition of speech production on the excitation source signal and vocal
tract resonance components of speech production is studied. Inferences are drawn from speech
classification results based on features derived from the two speech components. The following
paper titled "Significance of Excitation Source Information from Speech," describes the signal
processing technique for extracting excitation source information from speech. It reviews how
this is useful in various applications such as enhancement of noisy speech, speaker verification,



spoof detection, natural quality speech synthesis, and detection of speech disorders. The next
paper titled "An Interactive MATLAB based GUI for Speech Processing and Stress Detection"
describes a training toolkit developed for assisting learners of speech processing fundamentals
and applications. It allows a student interactivity with the software and allows processing of
speech signals in real-time. It has three modules viz. learning module, signal processing module
and stress detection module where the first module allows for review of theoretical concepts,
the second module can be used to learn basic and advanced speech signal processing methods
and the third module is an application learning environment of speech processing.

The paper "Multivariate Quadratic Regression based Direction Estimation of an Acoustic
Source" presents a machine learning based technique for direction of arrival estimation of an
acoustic source using a uniform linear array. A regression model is trained using correlation
features and is then used to estimate the direction of arrival. The performance is compared
with a conventional delay and sum beam former to show the potential advantage of such a
signal processing approach to the problem of direction of arrival.

The following paper titled "Underwater Communications: An Open Challenge," describes
the several challenges in underwater acoustic communications and how advanced signal
processing algorithms are pushing the boundaries of performance. Several state-of-the-art
communication modems are listed with their specifications. The paper describes channel
distortion models and accurate noise models that are used to improve communication efficiency.
The paper also gives results of experiments performed on underwater communications with
a designed modem.

In conclusion, I would like to thank Editor-in-Chief Dr. Biswajit Chakraborty and the
Editorial Board of JASI to give me the privilege to serve as Editor for this special issue. I also
thank the reviewers who provided valuable and timely feedback on the manuscripts. Much as
it was a pleasure for me to edit this special issue, I hope the reader will find the collection of
papers to be interesting and insightful into the multi-faceted uses of signal processing in
acoustics.

— Arun Kumar
Guest Editor - JASI

&
Professor and Head

Centre for Applied Research in Electronics
Indian Institute of Technology Delhi

New Delhi - 110016, India
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ABSTRACT

Spatial multi-zone sound field reproduction obtained by an array of loudspeakers are capable of
providing a personalized audio experience. The immersiveness of these spatial sounds depends
on the accuracy of the method to reproduce the sound field in the zones of interest from the desired
directions. The existing multi-zone methods either rely on improving the acoustic contrast between
the zones or minimizes the error in the reproduced sound pressures. In this work, a differential
phase constraint approach is developed that improves the directivity of the reproduced sound
field while preserving the acoustic contrast and the reproduction error. An optimization problem
is formulated that jointly minimizes the difference in the pressures and the phases in the zones
of interest. The performance of the proposed method is evaluated in a simulated environment on
the basis of obtained acoustic contrast, reproduction error and the directivity of the reproduced
sound fields. Additionally, the statistical analysis is carried out to support the proposed
framework.

1. INTRODUCTION
Multi-zone sound field reproduction with a set of loudspeaker arrays aims to deliver personalized

sound zones to individual listeners in vicinity of multiple listeners in a shared environment. Private
listening within a car environment, individualized listening in a home environment, personalized sound
during video conferencing, multi- zone sound experience at various public places such as music stores
and exhibition centres are the potential applications of multi-zone environment [1]. To meet the expectation
of this increasing demand, extensive research has been carried-out over the last two decades. The initial
methods[2]-[3] developed for the multi-zone environment, were based on controlling the acoustic energy
in the desired zones of interest with an objective to maximize the acoustic contrast (AC) between the bright
zones and the dark zones. Though, a significant improvement in acoustic contrast against 11dB of standard
acceptable limit was achieved in[4], but the method lacks in accurately reproducing the sound fields in
the bright zones within a car environment.

Later in[5]-[6], the multi-zone reproduction problem is addressed as a pressure matching (PM) approach
to outperform AC methods in terms of improved reproduction error. Authors in [5], were able to find the
optimal loudspeaker weights by solving the error minimization problem using least squares (LS). A
modified-LS approach based on Tikhonov regularization and energy constraint on driving signals was
also introduced in[7], [6]. To minimize the error and simultaneously improve the acoustic contrast, a joint
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of ACC and PM approach is used in[8]. Further, the robustness of these methods to uncertainties in acoustic
environment is investigated in[9] using ACC and PM. In addition, some multi-zone sound field
reproduction approaches are also developed in spatial and cylindrical harmonic domains considering mode
matching between the local and global region of reproduction[10]-[11]. The drawback here is that, with
increase in the reproduction area, the required number of loudspeakers also increases which may not be
suitable for multi-zone sound field reproduction. In all of the above multi-zone approaches, authors were
able to successfully reproduce the personal sound zone with a desired sound field and reduced
reproduction error. Also, the corresponding loudspeaker gains were obtained by solving the formulated
multi-zone problems. But it should be noted that none of authors tried to improve and preserve the
directivity, referred as the spatial quality, of the reproduced sound fields. Few research articles addressing
this aspect can only be found in literature[12]-[13]. Though in[13], with a planetary control method authors
tried to preserve the structure of target fields but lacks in maintaining the accuracy in directional
component in the desired direction. Thus, there is a scope of further improvement and a need of multi-
zone methods that takes into account the spatial aspects of the reproduced sound fields.

In this paper, a spatial multi-zone reproduction problem is formulated using a differential phase
constraint to enhance the spatial quality of the reproduced sound fields. The main contribution of this
work is to formulate a framework that jointly minimizes the difference in the sound pressures and the
phase in the zones of interest. Since the directivity pattern, is mainly present in the phase component of
the signal, preserving the same enhances the immersiveness of the reproduced sound fields. Therefore,
the present work is mainly focused on improving the directional component in the zones of interest without
significant variation in the performance of the acoustic contrast. With the introduction of differential phase
constraint, the proposed multi-zone problem becomes non-convex in nature, the optimization problem is
re-formulated by introducing a phase constraint with certain relaxation. The performance of the proposed
method is evaluated on the basis of obtained acoustic contrast, reproduction error and the directivity of
the reproduced sound fields.

The remainder of paper is organised as follows: In Section-II, the spatial multi-zone sound field
reproduction is discussed followed by modelling of target sound fields and problem formulation using
proposed approach. Later in Section-III, the performance evaluation of the proposed method is carried
out in terms of error analysis and an in-depth directivity analysis. Finally, the conclusion and future work
are discussed in Section-IV.

2. MULTI-ZONE SOUND FIELD REPRODUCTION USING DIFFERENTIAL PHASE
CONSTRAINT
Consider a multi-zone reproduction environment with Q listening zones where spatial sound is to be

reproduced using an array of L loudspeakers, as shown in Figure 1. In this environment, the loudspeakers
are assumed to be placed evenly over the surface of a sphere located at a point rl = (rl, l) with respect to
the center of environment, considered as the origin. Also at each listening spot, consider a spherical region
of radius Rq having polar coordinates (rq, q)  with respect to origin and Iq sample points evenly distributed
over its surface. Here,  = (, )  is considered a directional variable with  and  as elevation and azimuth
angles in spherical domain, respectively.

Now, the complex pressure at ith sample point  = ( , )i i i
q q qr r   on the surface of qth zone, due to the

loudspeaker setup at a frequency w, is given by

1

( ,  )  ( )  ( ,  ,  )
L

i i i
q l q l q

l

p k r a k g k r r


  (1)

where, al(k) is the driving signal for the lth loudspeaker and ( ,  ,  )i i
q l qg k r r  is the complex acoustic channel,

between  the ith sample point in qth zone and the lth loudspeaker. The complex channel ( ,  ,  )i i
q l qg k r r  can

be modelled on the basis of the type of the source considered at the loudspeaker position, i.e. either a
plane wave source or a point source with spherical wave front, as given below:
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cos

–
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




(2)

where, k is the wave number corresponding to angular frequency  and cos l corresponds to the unit
projection of plane wave in microphone direction, given by[14]

cos    cos   cos   cos(  – )sin sin  i i i
l l q l q l q        (3)

In equation-(2), the channel gain for a plane wave source is defined by obtaining the far-field
approximation of a point source as given in[14]. Now, irrespective of the state of a zone being a bright or
a dark, the above equations are valid for all the zones of interest. Considering Iq sample points over the
surface of qth zone, the reproduced sound field, in matrix form, can be expressed as

( )  ( ) ( )q qP k G k a k (4)

where, 1( )  La k C   is a vector corresponding to the loudspeaker gains and ( )  qI L
qG k C 

  is acoustic
channel matrix with elements corresponding to the free field Green's function defined in equation-(2).

Fig. 1. Figure illustrating a multi-zone environment with Q zones of interest placed within the
region of reproduction. The interior region enclosed by L loudspeakers placed over a

sphere is considered as the region of reproduction.

In a multi-zone environment at a given frequency , the acoustic contrast between a bright zone and
a dark zone is defined as the ratio of the average of the reproduced sound pressures given by[15]

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

H H H
b B B B BD D
d H H H

B BB D B D

P k P k a k G k G k a kI IAC k
I IP k P k a k G k G k a k

    (5)

where, BI 1( )  CBp k 
 and DI 1( )  CDp k 

 are the reproduced sound pressures in the bright and the dark
zone, respectively. In a multi-zone environment where multiple bright zones and multiple dark zones
are considered, the overall acoustic contrast ACoverall  is given as
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0 0

1( )  ( )
( )

B DN N
b

overall d
B D b d

AC k AC k
N N

 




 (6)

where, NB and ND are the number of bright zones and dark zones such that (NB+ND) = Q. Similar to[16],
the other parameter that should be taken into consideration in each bright zone is the normalised
reproduction error, which is given as

[ ( ) – ( )] [ ( ) – ( )]
( )  

[ ( )] [ ( )]

t H t
B B B B

t H t
B B

p k p k p k p k
Error k

p k p k
 (7)

where, ( )t
Bp k  is the target sound field to be reproduced in a bright zone. Similar to ACoverall(k), the overall

reproduction error Erroroverall(k) can be obtained by averaging the individual reproduction error in each
zone.

In addition, from the perceptual point of view, the directivity of the desired sound must be preserved
in the reproduced sound fields. To quantify the directivity, the directivity index (DI) is widely used and
is obtained from the directivity factor (DF), given by [17]

2

0 0

2
( , )

2
( ) 21 ( , )

24

n

n

y k
DF k

y k d d
 

 






 
(8)

where, ( , )ny k   is the response of the spatial filter in the zone of reproduction in the direction n, defined
as[14]

2

0 0
( , ) * ( , ) ( ,  )n n qy k w k p k r d d

 

     (9)

1 1

( , ) * ( , ) ( ,  ) * ( , ) ( )
Iq Iq

i
n i n q n q

i i

y k w k p k r w k p k
 

      (10)

where, w*(k, n) is the weight vector with elements defind as wi*(k, n) = – . i
n qk re   obtained using a plane

wave decomposition. In above, kn is the wave vector in the direction n. Now, the objective here is to
find the loudspeaker gains a(k) that can accurately reproduce the target sound fields in the bright zones
and simultaneously maximizes the overall acoustic contrast ACoverall(k) while maintaining the required
directivity pattern as defined by the target sound fields.

2.1 Modelling of Target Sound Fields
A multi-zone sound environment has multiple bright and dark zones with high fidelity spatial sound

in bright zones and complete silence in dark zones. In each bright zone, the target sound field can be
modelled using multiple plane waves arriving from different directions. Similar to [18], uniformly sampling
the unitary sphere into N angular locations ˆnv , the target sound field at ith point on the surface of a bright
zone can be expressed as

ˆ .

1

ˆ( , ) ( , ) 
i

n B

N
jkv rt i

B n
n

p k r v k e



 (11)

where, ˆ( , )nv k  is the density function at frequency  = kc0  in the direction of unit vector ˆnv . For simplicity,
we focus on the case when ˆ ˆ ˆ( , ) = ( – )n n ov k v v   which corresponds to a single plane wave arriving from
the direction ( , )o o o   . Now, the equation-(11) can be re-written as

ˆ .( , )
i

o Bjkv rt i
Bp k r e (12)
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Therefore, the complex target pressures 1( )  BIt
Bp k C 

 for a bright zone can be expressed as

1 2( )  [ ( , ) ( , ) ... ( , )]BIt t t t T
B B B Bp k p k r p k r p k r (13)

Also, it is assumed that each dark zone is completely a silent zone with minimum flow energy across it.
Therefore, we can assume that target pressures ( )t

DP k in each dark zone is a vector of size IB × 1 with element
equal to zero.

2.2 Problem Formulation using Differential Phase Constraint
The multi-zone reproduction problem can be formulated by directly minimizing the error between

the target sound fields and reproduced sound fields. The conventional pressure matching using Least
Squares (LS) approach can be expressed as

1

1min 2              ( ) – ( ) 2( ) 2

. .   ( )  ( ) ( )     1,  ...,  

                      ( ) ( )  

Q
t

q q
q

q q

H

p k p ka k

s t p k G k a k q Q

a k a k 



  





(14)

The energy constraint on a(k) is applied to ensure that the array effort is always below a threshold .
The above problem is convex in nature and can be solved as such using[19]. The solution to this problem
results in minimum error sound reproduction.

Furthermore, the performance of this conventional approach in terms of the spatial sound quality can
be improved by introducing an additional phase constraint that preserves the directivity pattern. Since,
it is necessary to maintain the accuracy of reproduction in bright zones, the phase constraint can only be
applied on the bright zones. Now, the optimization problem can be formulated as

1

,
–1 –1

,

1 2min               ( ) – ( )( ) 22

. .   p ( )  ( ) ( )     1,  ...,  

( ) ( )
tan – tan ,  

( ) ( )

                      ( ) ( )  

Q
t

q q
q

q q

im t im
q q

Bre t re
q q

H

p k p ka k

s t k G k a k q Q

p k p k
q N

p k p k

a k a k







  

   
      
   
   





(15)

where, pre(k) and pim(k) corresponds to the real and imaginary part of the complex pressures p(k). The
phase constraint applied here minimizes the phase error at each sample point by keeping it below a
threshold  but at the same time the formulated framework becomes non-convex in nature. Thus, to retain
the convexity in the above framework, the phase constraint can be replaced by its relaxed approximate.

Using the property of tan–1(.), i.e. –1 –1 –1 – )
tan ( ) – tan ( ) tan

1
x y

x y
xy

 
  

 
, the differential phase constraint can

be replaced by its equivalent affine constraint. Therefore, the proposed framework can be re-formulated
as

1

1min 2              ( ) – ( ) 2( ) 2

. .   p ( )  ( ) ( )           1,  ...,  

ˆ      p ( )  ( ) ( ),      

                     ( ) ( )  

Q
t

q q
q

q q

im t re
q q q B

H

p k p ka k

s t k G k a k q Q

k p k p k q N

a k a k 



  

   





(16)
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where 
,

,

( )
ˆ ( ) ,  

( )

t im
qt

q Bt re
q

p k
p k q N

p k
   , is constant quantity. Now, the above formulated framework is convex

in nature and can be solved by the standard cvx toolkit[19].

(1) Significance of Differential Phase Constraint : The performance of any multi-zone sound
reproduction depends on how accurately the given loudspeaker setup is able to reproduce the sound
fields close to the desired sounds of interest. In spatial sound field reproduction, it is required that
the methodology used must preserve the directional content in the reproduced sound fields. Since,
the directional information completely depends on the phase of the reproduced sound pressure, an
additional constraint on phase will definitely improve the directivity of the reproduced sound fields.
Additionally, in multi-zone sound reproduction, it is more necessary to maintain the accuracy of
reproduction in bright zones, therefore, the differential phase constraint can only be applied on the
bright zones.

3. PERFORMANCE EVALUATION
In this section, the experimental setup alongwith experimental conditions considered to evaluate the

performance of the proposed methodology are discussed first. Subsequently, the analysis of reconstructed
sound fields and the obtained results, conducted to show the effectiveness of proposed method, are
discussed.
3.1 Experimental Setup

The proposed framework evaluated in a multi-zone environment where Q = 4  zones of interest, i.e.
NB = 2 bright zones and ND = 2 dark zones, are considered as shown in Figure 2. The zones of interest
are assume to be spherical in shape having a radius of Rq = 0.1m, q. In Figure 2(a), the points with
coordinates (+0.75, +0.45 0) defines the position of each listening zone, i.e. the center of each zone
respectively. In the same figure, an array of 512 loudspeakers are assumed to be placed over a sphere of
radius Rl = 2m in icosahedron pattern. Similarly, it is assumed that the surface of each zone of interest is
sampled icosahedronally and the reproduced sound pressures are analysed using these sample positions,

Fig. 2. Figure illustrating (a) the experimental setup with loudspeaker arrangement and zone positions
(b) considered microphone positions in each zone.
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i.e. Iq,q. Therefore, a total of 64 microphones are considered in each zone of reproduction, as shown in in
Figure 2(b). In this experiment, among the available Q = 4 zone positions, bright zones are selected at
diagonal positions. Though the choice of selection is completely application specific where the multi-zone
scenario is considered, but in order to balance the distribution of bright and dark zones within the region
of reproduction we evaluated the proposed framework with above assumptions.
3.2 Experimental Conditions

The proposed method is tested in a simulated multi-zone environment with the experimental setup
as mentioned in Section-III-A. The simulated environment is considered with anechoic conditions. For
simplicity, each loudspeaker is assumed to emit a plane wave with unit amplitude travelling in the
direction of their position. Therefore, the complex acoustic channel matrices GB, b  NB and GD, d 
ND are defined using equation-(2) corresponding to plane wave source. Also, in each bright zone, the
target sound fields are considered to be a plane wave travelling from direction 1 = (150°, 0°) in bright
zone-1 and 2 = (45°, 45°) in bright zone-2. The proposed method is tested for a broadband frequency
ranging from F = 500 Hz to 3500 Hz.
3.3 Analysis of Reconstructed Sound Fields

In this work, the target sound field are reconstructed by two methods; the conventional-least square
(LS) corre- sponding to pressure matching and the proposed method named as the least-square with
differential phase constraint (LS-DPC). The reconstructed sound fields over the surface of both the bright
and dark zones at F = 2000 Hz are illustrated in Figure 3. It can be observed that both LS and LS-DPC
methods reproduce sound fields similar to target sound fields in both the bright zones. Also, both the
methods minimize the energy flow significantly in both the darks zones. The performance of the
reproduced sound field is also analysed using an average error distribution obtained in both the bright
zones, Figure 4. In term of mean and variance of average error, both the methods show similar
performance.

Fig. 3. Figure illustrating the target sound fields in both the bright zones along with the reproduced
normalized sound fields using LS and LS-DPC methods in different zones obtained at F = 2000 Hz.

Additionally, a statistical analysis of average error distribution in both the bright zones for 2 different
scenarios are listed in Table 1. In first scenario, the target field in bright zone-1 is fixed at 1 = (150°, 0°)
and target field in bright zone-2 is rotated in 4 different directions as considered in the Table 1. In second
scenario, the target field in bright zone-2 is fixed at 2 = (45°, 45°) and target field in bright zone-1 is
rotated in 4 directions as considered earlier. From the Table, it can be observed that LS-DPC outperform
in first scenario for case-1 and case-3 in both the bright zones and case-4 in bright zone-2.

Even in second scenario, LS-DPC shows similar performance as LS in both bright zones in case-1 and
case-2. This results shows the equal performance of LS-DPC and LS in terms of average error distribution
when averaged over multiple scenarios.
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Fig. 4. Figure illustrating the average error distribution obtained by using
LS and LS-DPC approaches obtained at frequency F = 2000 Hz.

Fig. 5. Figure illustrating the variation of individual acoustic contrast (AC) and mean square error (MSE)
obtained by using LS and LS-DPC approaches obtained at frequency F = 2000 Hz.
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In Figure 5, the variation of individual acoustic contrast and individual mean square error (MSE) over
the considered frequency range is presented. From Figure 5(a), it can be observed that the performance
both LS and LS-DPC in terms of acoustic contrast are similar over the given frequency range. Also the
performance in terms of MSE is observed similar for higher frequency ranges, as shown in Figure 5(b). It
should be noted that the phase information is of lesser significance for the lower frequency ranges on a
spherical region of reproduction having 20 cm of radius, i.e. equivalent to human head[20]-[21]. Therefore,
an over-fitting of the phase degrades the performance of LS-DPC in lower frequency ranges.

Additionally, the placement of active number of loudspeakers and their corresponding weight are
shown in Figure 6. Though, the conventional method has tendency to distribute reproduction error across
all the loudspeaker, still the active number of loudspeakers are 510 when compared with 512 active
loudspeakers in LS-DPC. The minimum threshold was set to –20dB for a loudspeaker to be assumed in
inactive state. From Figure 6, it can observed that the loudspeakers having lower energy in the range of
100–200 and 400–500 are boosted when the differential phase constraint is introduced. Further, the energy
of the dominant loudspeakers becomes more evenly distributed after applying the phase constraint. Thus,
it can be stated that LS-DPC method utilizes the loudspeaker setup more efficiently than conventional LS
approach.

Although, both the LS and LS-DPC methods reproduce similar sound fields in both bright zones but
it will be interesting to observe which method preserves the directivity close to the target sound fields. A
detailed directivity error analysis comparing both the methods is presented in the next sub-section.
3.4 Directivity Analysis

In this section, the performance of both the methods LS and LS-DPC is evaluated on the basis of
y(k, n), the directional component as defined in equation (9). The normalized distribution of directivity
component, 2

2( ,  )ny k  , obtained in the target sound field and in the reproduced sound fields using both
the methods are presented in Figure 7. It is difficult to distinguish the directivity patterns in both LS and
LS-DPC methods by visual observations as both look alike. To quantify the difference, the corresponding

Table 1. Obtained statistical measures, mean () and variance (2), corresponding to average error distribution for

both the bright zone (BZ) measured at F = 2000 Hz with fixed 
1
 = (150°, 0°) and fixed 

2
 = (450°, –45°) for (A)

case-1 with  = (0°, 36°) (B) case-2 with  = (0°, 72°) (C) case-3 with and  = (0°, 180°) (D) case-4 with  = (0°,

–36°).


1
 (Fixed)

Methods Zones Case-1 Case-2 Case-3 Case-4

 2  2  2  2

LS BZ-1 -0.04356 0.0001556 -0.02868 0.0001163 -0.04114 0.0001432 -0.04105 0.0001382

BZ-2 -0.02667 0.0000274 -0.03224 0.0000655 -0.01461 0.0000131 -0.02858 0.0000394

LS-DPC BZ-1 -0.04110 0.0001411 -0.03167 0.0001065 -0.0328 0.0000933 -0.04234 0.0001471

BZ-2 -0.02192 0.0000245 -0.03520 0.0000777 -0.01432 0.0000102 -0.02818 0.0000405


1
 (Fixed)

Case-1 Case-2 Case-3 Case-4

 2  2  2  2

LS BZ-1 -0.01527 0.0000220 -0.04666 0.0000974 -0.01513 0.0000166 -0.01804 0.0000476

BZ-2 -0.03527 0.0001155 -0.05590 0.0001345 -0.03576 0.0001159 -0.03387 0.0001132

LS-DPC BZ-1 -0.01542 0.0000185 -0.04632 0.0000974 -0.01644 0.0000263 -0.02139 0.0000537

BZ-2 -0.03551 0.0001101 -0.05764 0.0001398 -0.03647 0.0001232 -0.03286 0.0001097
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Fig. 6. Figure illustrating the active and inactive loudspeaker positions for (a) LS method and
(b) LS-DPC method at frequency F = 2000 Hz. The corresponding loudspeaker weights thus

obtained using LS and LS-DPC are shown in (c) and (d), respectively.

Fig. 7. Figure illustrating the normalized distribution of 2
2( ,  )ny k   obtained in both the

bright zones corresponding to (a) the target sound fields (b) reproduced sound fields using LS
(d) reproduced sound field using LS-DPC and its corresponding error distribution

(c) using LS  and (e) using LS-DPC for F = 2000 Hz.
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Table 2. Obtained sum of absolute error (in dB) for both the bright zone (BZ) with fixed 
1
 = (150°, 0°) and fixed


2
 = (45°, –45°) for (A) case-1 with  = (0°, 36°) (B) case-2 with  = (0°, 72°) (C) case-3 with and  = (0°, 180°)

(D) case-4 with  = (0°, –36°).


1
 (Fixed) 

2
 (Fixed)

Methods Zones Case-1 Case-2 Case-3 Case-4 Case-1 Case-2 Case-3 Case-4

LS BZ-1 -59.93 -54.66 -54.91 -55.97 -41.99 -48.11 -48.63 -48.57

BZ-2 -59.81 -54.73 -54.67 -55.83 -48.79 -47.96 -48.47 -48.45

LS-DPC BZ-1 -57.86 -50.71 -52.43 -68.40 -55.40 -67.39 -55.97 -51.43

BZ-2 -63.72 -55.38 -56.87 -66.55 -60.44 -69.30 -58.80 -53.63

error distribution are obtained and shown in Figure 7(c) and Figure 7(e). Here, the error E(k, n) in the
directional component 2

2( ,  )ny k  , is defined as
22

target2 2
( , ) ( ,  ) – ( ,  )n n nE k y k y k    (17)

where, ytarget(k, n) is the directivity component of the target sound field. From Figure 7, it can be clearly
noticed that the range of error is lower in LS-DPC method when compared to LS method in both the
bright zones. Thus, LS-DPC shows a significant improvement in preserving the directional component in
both the bright zones when compared with LS approach.

Further, to show the effectiveness of LS-DPC method over LS method, the sum of absolute error (in
dB) across multiple n for 2 different scenarios, as considered in Section-III-C, are listed in Table 2. From
the Table, it can be observed that the sum of absolute error are better in LS-DPC method in both bright
zones in case-1 and case-4 under first scenario where 1 = (150°, 0°) is fixed. Even in second scenario
where 2 = (45°, 45°) is fixed, LS-DPC method outperform LS approach in most of the case scenarios.

4. CONCLUSIONS
In this work, a spatial multi-zone sound field reproduction method based on a differential phase

constraint is presented. In-order to preserve the directional component in the reproduced sound fields,
an additional phase constraint on the reproduced sound field is introduced in this framework. This convex
optimization problem jointly minimizes the difference in acoustic pressure and the phase in the zones of
interest. The multi-zone problem is thus formulated is generic in nature and can be applied to any multi-
zone sound scenario. For the purpose of evaluation, the proposed framework is tested in a simulated
environment to reproduce the desired sound in two different zones in the presence of two different dark
zones. The performance of proposed method is compared with conventional pressure matching approach,
formulated in least squares sense, in terms of acoustic contrast, reproduction error, loudspeaker
performance and directivity analysis. The proposed approach outperforms the conventional method in
terms of improved directivity and effective utilization of the given loudspeaker setup. In terms of acoustic
contrast and reproduction error it provides similar performance when compared to state of the art
approaches. An in-depth directivity analysis is also presented for various case scenarios of target sound
fields in the sound zones of interest. Furthermore, the statistical results thus obtained supports the
effectiveness of the proposed framework. As part of future work, the present framework can be extended
to multi-zone sound reproduction in reverberant and noisy environments.
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ABSTRACT

Automatic detection and classification of heart sounds (HSs) play a vital role in the diagnosis of
cardiovascular diseases. In this paper, we propose a multi-component oscillatory model for the
classification of HS segments of the PCG signal. A half-period sine wave is fitted between every
two consecutive zero-crossing points to extract the proposed model parameters. The representation
of the HS segments improved with the iterative use of multiple oscillations. The proposed method
is tested and validated with a publicly available Physionet challenge 2016 database. The parameters
of the model are deployed for the classification of normal and abnormal HS segments. The
performance of the proposed method achieves a better average accuracy using a random forest
classifier.

1.  INTRODUCTION
Auscultation of heart sound (HS) is a primary and cost-effective method for the early detection of

cardiovascular diseases (CVDs)[1]. HSs are of low-intensity acoustic vibrations in which bandwidth is
ranging in between 10-1000 Hz[4]. Figure 1 shows the frequency range of HSs along with its intensity
level. Phonocardiogram (PCG) signal records these sounds, and it is used widely to diagnose heart valve
disorders (HVDs)[2]. It shows S1 and S2 sound patterns in healthy condition. However, in case of
abnormalities along with these two sounds, other sounds, and murmurs, might occur[3]. Figure 2 shows
one cycle of a standard PCG recording with its four segments, namely, S1 and S2 sound, Systole, and
Diastole. The modeling of HSs is an essential tool in the automatic diagnosis process. The parameters of
the model could be used as features to classify between normal and abnormal HS segment.
Numerous models have been proposed on the heart sounds for the analysis and classification of HSs. A
pole-zero model has been proposed by Joo et al. to identify the prosthetic valve state[5]. Similarly, a chirp
model is proposed by Xu et al. to extract the aortic and pulmonary components of S2 sound[6]. Damped-
sinusoidal models are used widely for the analysis of heart sounds[7,8,9,10,11]. Rasmus et al. has classified
S2 sound split using a windowed sinusoidal model[10]. Other approaches also used a matching pursuit
model for the classification of valvular heart disorders[12]. The wavelet-based model is used by
Maglogiannis et al. to classify heart sounds[13].
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Most of the existing models have been focused on the classification of a particular heart disorder. The
performances of these models are not evaluated on a standardized database. In this work, we propose a
multi-component oscillatory model that can capture the non-stationary behavior of HS segments properly.
Further, the parameters of the model are deployed for the classification of normal and pathological HS
segment using random forest (RF), support vector machine (SVM) and k-nearest neighbors (KNN)
classifiers.
The rest of the paper is organized as follows: Section 2 presents the proposed method for the classification
of the HS segment. Section 3 evaluates the model performance for the classification of HS. Section 4 ends
with a few conclusive remarks.

2. PROPOSED METHODOLOGY
In this work, we propose a method for the classification of HS segments. The method consists of four

sections, i.e., pre-processing of PCG signal, proposed multi-component oscillatory model-based feature
extraction, and recognition of HS segments. Figure 3 shows the block schematic of the proposed method.

Fig. 1. Spectral characteristics of cardiac sound
and their relation with the human audibility.
The figure is adopted from Leatham et al.[4].

Fig. 2. Recording of a PCG signal. A
cardiac cycle with its four segments i.e.

S1, S2 Systole and Diastole.

Fig. 3. Schematic outline of the proposed methodology.

2.1 Pre-processing
The unwanted signals such as ambient noise, lung sound, and surrounded speech affect the PCG signal

recording[15]. Thus, the PCG signal is applied through a sixth-order Butterworth high pass and low pass
filter with cut-off frequencies 10 Hz and 800 Hz, respectively. The friction spikes, which amplitudes are
higher than the heart sounds, are removed using the Schmidt spike removal process[16]. The filtered PCG
signal is segmented into cycles or frames. Each cycle is further segmented into four sections; namely, S1,
S2, systole, and diastole correspond to each cardiac cycle. The segmentation of PCG plays a crucial role
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in localization and analysis of cardiovascular diseases, which affects those particular regions. Springer's
segmentation algorithm is performed for the segmentation of these HSs [17].

2.2 Proposed Oscillatory Model
The proposed oscillatory model is employed upon both the normal and abnormal HS segments. A

half period sine function is fitted between every two consecutive zero-crossing points to model the HS
segment. Suppose S denotes a non-stationary signal with the number of zero-crossings (Nz) and sample
points (Nt). The parameters of the sine function between two consecutive zero-crossing points ti and ti+1
i.e., amplitude, frequency, and phase are calculated as[14].

1

1 1
( ) ,  ,  

2 – –
i
i

ti i i i
t

i i i i

ta mean S
t t t t

 
 

 

  

Sequentially, the model parameters for the entire signal(S) are formulated as:

      1,  ,  ,  i i i
i ia t a t t t t t         (1)

Where i  [1, Nz – 1], and 1 < t < Nt. So, the representation of the signal (S) using the proposed model
parameters of the Eq. (1) as follows:

     ( )[sin[ . ]S a t t t t  (2)

It has been observed that HS segments are not mostly cycloidal shape, and in such cases, it isn't
straightforward to represent the signal using Eq. (2). Therefore, to capture the variations of the HS segments
properly, multiple oscillations or components can be modeled at different time instants. So, the above
Eq. (2) can be rewritten as follows:

   
1

( )sin[ . t ]
p p p p
p

S a t t t


  (3)

Where ap(t), p(t) and p(t) are the corresponding amplitude, frequency and phase, respectively for pth

component sinusoid. Now, to compute for the pth component parameters, firstly, the residual signal is
calculated by finding the difference between the original signal and the reconstructed one (which is the

Fig. 4. Reconstruction of HS segments (a) S1 sound, (b) Systolic segment, (c) S2 sound, and (d) Diastolic
segment. (i) The four subplots in the first row depict the first model component of all four HS segments.

(ii) and (iii) depicts the second and third model components of the four HS segments.
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sum of the last p – 1 components) iteratively, by finding the model parameters of the Eq. (1). Figure 4
shows all the four HS segments of a normal PCG recording with its reconstruction for different model
components. It is observed that the first model component is not able to capture all the morphological
variations of the HS segments. So, with the increase in model components, it helps in extracting detail
variations of the segment perfectly. Figure 5 shows the plot of the Pearson correlation coefficient (PCC)
with the model components. It is observed that after the third model component, the PCC value reaches
almost one.
2.3 Proposed model based features

The selective parameters of different model components of the HS segment are used as features for
the classification of HS segments. It is tested that among parameters, amplitude, and frequency features
perform better. Finally, eight prominent amplitudes and their corresponding frequencies from model
component 1, while four prominent amplitudes and their corresponding frequencies from model
component 2 are deployed to form the feature set for the proposed model. Statistical analysis is performed
among these features. This shows that the distribution of these features has the capability to distinguish
between normal and abnormal HS segment.
2.4 Classification

The selected feature sets are employed for the classification of normal and abnormal HS segment.
The performance of the proposed method is evaluated using three classifiers, k-nearest neighbor (KNN),
support vector machine (SVM) and random forest (RF). The classification performance is evaluated using
a standard 10-fold cross-validation method.

3. RESULTS AND DISCUSSION
The proposed method is evaluated on a publicly available Physionet challenge 2016 database [18]. The

database contains five datasets, namely, training set-a, b, c, d, e, and f. It contains a total of 3240 (2575-
Normal and 665- Abnormal) PCG recordings from 764 subjects/patients. The sampling rate of each
recording is 2 kHz, with a duration varied from 5 s to 120 s. Firstly, all the healthy and pathological PCG
recordings are pre-processed. A total of 68647 numbers of normal and 18,636 numbers of abnormal
segments of all the four HS segments are obtained. Each segmented HS is modeled by the proposed
method. The evaluation of the proposed model is carried out with suitable measures for the recognition
of HS segments.

The selected feature vector for different HS segments shows better potential for the classification.
Figures 6 and 7 show the box plots of eight prominent amplitude features of first model component for
S1 and S2 sound. It can be observed that the distribution characteristics differ between normal and
abnormal cases for both S1 and S2 sound. Three supervised classifiers, RF, KNN, and SVM, respectively,
are deployed to evaluate the proposed model performance. The configuration utilized for these classifiers,
such as RF (estimators = 10, criterion = entropy), SVM (kernel function = RBF), KNN (k=10, distance
measure = Euclidean). Each classifier's performance is 10-fold cross-validated. Table 1 shows the average

Fig. 5. PCC of normal HS segments up to model component 8.
(a) S1 sound, (b) Systolic segment, (c) S2 sound, and (d) Diastolic segment.
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Table 1. Average classification accuracy (%) for the HS segments.

Classification category Classifier

RF KNN SVM

S1 sound 84.16 83.73 82.88

Systolic segment 83.25 82.63 82.75

S2 sound 84.85 84.74 83.84

Diastolic segment 82.81 81.66 80.61

Fig. 6. Box plot of eight prominent amplitude features for the first model component of S1 sound.

Fig. 7. Box plot of eight prominent amplitude features for the first model component of S2 sound.
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classification accuracy for the HS segments. The result showed that the RF classifier has better average
classification accuracy (%) for all the HS segments as compared to KNN and SVM. It produces average
accuracies (%) of 84.16, 83.25, 84.85, and 82.81 for the S1 sound, systolic segment, S2 sound, and diastolic
segment, respectively.

4. CONCLUSION
This paper presents a multi-component oscillatory model for the classification of HS segments as

normal and abnormal. The parameters of the model are calculated between two consecutive zero-crossing
points of an HS segment. The performance of the model is further improved with the addition of multi-
component sine wave functions iteratively. The experiments were performed on the CinC challenge 2016
database, available in the Physionet archive. The classification results show that the average accuracy (%)
of the RF classifier outperforms SVM and KNN for all the HS segments. In the future, proposed model
features can be employed for real-time monitoring of heart valve disorders.
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ABSTRACT

This paper provides an overview of major research activities since the year 2006 related to Passive
Acoustic Monitoring (PAM) of the Ganges River Dolphin in India. The research has been
coordinated by the author for the joint field expeditions funded by Japan in Odisha (at
Budhabalanga River), in UP (at Karnavas, Bhitora) and a fully indigenous effort in UP (at Narora)
enabled by CSR funding. The paper presents pioneering observations of bio-sonar characteristics
including dolphin click pulse temporal properties, Source Level, and beam width using a
hydrophone array consisting of a combination of linear SBL and a triangular SSBL array in
Budhabalanga River. Subsequently, a specialised cross-array has been developed for habitat related
studies in Ganges River at Karnavas that cover the variation in inter-click interval (ICI) depending
on activity, and day-to-day temporal behaviour in multi-year studies. We present the field
calibration test of an indigenous large triangular array for acoustic localization of dolphins up to
over 250 metres in Narora. This has been followed up with a 2-hydrophone array for conducting
acoustic census of dolphins from a moving boat. Several encounters with dolphins show the utility
of this innovative technique which is also corroborated with visual recordings with on-board video
cameras.

1. INTRODUCTION
The Ganges River Dolphin Platanista gangetica is the flagship marine species of the Ganges River

system, being on top of the food chain in the river ecosystem. Therefore, it has been used as an indicator
species for the health of the river system. It has been a matter of deep concern that the numbers of these
animals have been dwindling due to various human activities. Due to its endangered status, it has been
given strong protection by the government and has been declared the National Aquatic Animal in 2009.
Monitoring the habitat and numbers of these animals is considered very important. The usual way is by
human visual observation, but that is prone to various errors and constraints such as effects of weather
and visibility. Since the dolphins use echolocation, one way to observe them is by passive acoustic monitor-
ing (PAM). However, prior to the year 2006, very limited studies were available and little had been known
about the acoustic characteristics of the bio-sonar of the Ganges River dolphin in the wild. This paper
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provides an overview of the research work done in developing PAM technologies for monitoring their
habitat and also for counting their numbers. Techniques were first developed jointly with researchers from
Japan, and subsequent CSR funding helped in developing indigenous technologies including Integrated
Visual and Acoustic Survey (IVAS).

2. BIO-SONAR CHARACTERISTICS OF A LONE FREE-RANGING ANIMAL
The first systematic study of bio-sonar characteristics of

Ganges dolphin in the wild environment was carried out
during April 2006, when an isolated dolphin in the
Budhabalanga river in Odisha (Orissa) was studied by a team
of scientists. In this section, we discuss and present results on
the various bio-acoustic aspects of the Ganges river dolphin.

2.1 Acoustic Observation System
Acoustic observation of echolocation clicks of marine

mammals requires a specially designed array of hydrophones
that can be effectively deployed in the animal's river habitat.
Since the dolphin is manoeuvring in 3-dimensions in the water
column, it is required to localize the sound source in 3-
dimensions. A multi-hydrophone 3.2 metre long array
composed of three hydro-phones (H1, H2, H3) forming an
equispaced linear short base line (SBL) array and another two
hydrophones (H4, H5) in conjunction with the central
hydrophone (H2) forming a small super short base line (SSBL)
triangular array in a plane perpendicular to the array axis
shown in Fig. 1 has been used[1].  The array can be deployed
both in horizontal and vertical orientation. The positional
accuracy of the SBL system is better than 1 metre in range and
less than 12 cm in cross range at a range of 50 metres.

The recording system is shown in
Fig. 2. The echolocation clicks are
amplified over a sufficiently wide
bandwidth of 30-180 kHz and sampled
at a rate of 500 k-samples/second with
a 16-bit A/D converter. The recording
duration for each data file was set to 300
seconds.

2.2 Acoustic Characteristics of Clicks
A typical click (Fig. 3) is a short pulse

of about 40 micro-seconds having a
centre frequency of about 65 kHz. Figure
4 shows a sample of click data record.
The ICI (inter click interval) of the click
trains lies in the range of 20-160
milliseconds. The intermittent bursts of
click trains indicate it is not possible for
all emitted clicks to be recorded by the
hydrophones due to the manoeuvring
dolphin that is having a narrow sonar
transmission beam.

Fig. 1. Hydrophone array structure [1].

Fig. 2. Recording system.
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2.3 Source Level
Click source level is an important parameter to predict detection range of the dolphins using

hydrophones. An estimate of the dolphin's 3-D location was first made from the relative delays of the
click signal received at the three SBL hydrophones with the array deployed vertically. The signal level
received at each hydrophone was then used to estimate the source level, called the apparent source level
(ASL) using the hydrophone sensitivity and the range estimate of the source. The peak-to-peak SL of the
dolphin click was obtained from those clicks that were directed towards the array, and was determined
to average 172.5 dB re 1 Pa (see Fig. 5)[2]. The lone dolphin was usually seen swimming around the array
within a range of approximately 30 metres during the experiment (see Fig. 6). The dolphin's trajectory
indicated that clicks were well detected only when the dolphin swam generally toward the array. From
this, we presume that the dolphin's transmission beam pattern is quite narrow so that the array would
not record clicks when the dolphin was momentarily not facing the array.

Fig. 5. Peak-to-Peak ASL on the central hydrophone versus range of the dolphin [2].

Fig. 3. Ganges river dolphin's typical click Fig. 4. Click trains observed over 300 seconds.
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Fig. 6. An example of the dolphin's XY movement during 300 seconds. The dolphin was approaching
towards the array (arrow no.1), then moving around the array area (arrow no. 2),

and then again approaching the array (arrow no. 3) [2].

Fig. 7. The dolphin's the -3dB beamwidth is approximately 12 degrees in the
horizontal plane and 12.8 degrees in the vertical plane [2].

2.4 Beam Pattern
The beam pattern of the dolphin clicks in horizontal and vertical planes was innovatively obtained

with the array deployed in horizontal and vertical configurations, respectively. The apparent source level
(ASL) corresponding to the actual beam pointing direction (peak direction) was estimated by fitting a
quadratic curve on measured values of  ASL1, ASL2 and ASL3 (where the subscript refers to hydrophone
number) on the 3 hydrophones of the SBL array. Using the location of the dolphin determined from the
time delays, the angular separation of H1 and H3 from the peak direction were first estimated. The ASL1
and ASL3 were then plotted at these estimated angles to recreate the Ganges river dolphin's beam pattern
in the appropriate plane, as shown in Fig. 7.  This is the first time that a free-ranging Ganges dolphin's
beam pattern was obtained.
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3. HABITAT-RELATED STUDIES IN NARORA
Studies in the habitat of dolphins in a river system require a fixed array structure that does not require

to be specifically oriented as in the previous case. Since the river habitat is mainly spread horizontally
with relatively less depth, a horizontal cross array of 4 hydrophones with a 5 th central hydrophone and a
6th vertically displaced hydrophone is adequate for localization.

3.1 Array system
A high frequency 6-hydrophone cross array system developed in January 2008 (Fig. 8) has been utilized

for the long-term real-time monitoring at Narora. The inter-hydrophone spacing is 80 cm. The system
calculates each dolphin click's real-time 3-D location and transmits the 3-D data to the host server through
a GPRS modem. The system can be interfaced with sensors to monitor the river environment such as water
quality (CTD), pH, dissolved oxygen, transparency etc. A computer with appropriate viewer program
can connect with the host server anywhere by internet and a GUI can display the real-time location of
the dolphins on the habitat map.

Fig. 8. High frequency 6-hydrophone array [3]

3.2 Typical behaviour of individual dolphins
The first long-term real-time habitat monitoring of the Ganges river dolphins was conducted from

12th November 2008 for 4 months in Karnavas village near Narora (UP).  Several adults and a few calf
dolphins are found to inhabit between Karnavas and Narora.  It may be noted that Ganges river dolphin's
underwater behaviour had been unknown until this time.

A particular data record was analyzed (Fig. 9), where one dolphin came to within approximately 10
meters from the array as shown in Fig. 10[3]. The ICI of the dolphin is found to vary during a data record
perhaps due to its particular activity. It is normal for a man-made sonar to reduce ICI while approaching
a particular object of interest, in order to get fast updates on the target. A similar situation has been
observed in dolphin sonar.  The vertical profile of the dolphin's position showed that during the bottom
stay on 2-3 occasions lasting 0.4 to 3.7 seconds, ICI rapidly reduced to approximately 10 milliseconds from
30 milliseconds as it would have been investigating and approaching a specific target of interest.

From these results, it is estimated that the echo-location process of the dolphin changes between the
normal search phase to a special interest phase corresponding to a reduction in ICI. This leads us to
conjecture that the dolphin is foraging or looking at obstacles near the bottom during that period.
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Fig. 9. Wave file data record of a click train [3]

Fig. 10. 2-D trajectory of the dolphin

3.3 Temporal behaviour of the Narora population
Long term monitoring allowed us to understand temporal behavior of the dolphins in Narora.

Temporal behaviour data for three consecutive years is presented here. The data is analyzed based on
number of clicks number, average distance X (longitudinal position along the general river direction) and
its standard deviation (SDX).  Click number in a particular period is related to the dolphins' length of
stay around the observation area, while average X and its SDX provides information of their habitat
location along the river (upstream/downstream) and the region of frequent stay respectively[4]. Fig. 11
shows the monthly trends of average click number, average X and its standard deviation SDX on a
particular day during three monitoring phases.  Similar trends of averaged click number are seen in the
first and second phases, i.e. the peak click number was reached in January in the first and second phase.
Average X and its SDX also show similar trends of fluctuations in the first and second phases.  However,
the first phase shows larger average X (in the first half period) and smaller SDX (in the entire period)
than the second phase. On the other hand, the trends of average click number, average X and its SDX in
the third phase is different from the other two monitoring phases, i.e. the peak click number was reached
in December, and average X and its SDX were almost stable in the third phase.  From this analysis, we
could say that the migration of the dolphins from the observation area began from the end of March to
the beginning of April in the first and second phases, while the dolphins were mostly migrating or passing
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through the array area in the third phase during that period. It has also been noted by correlation that
the Ganges river dolphins usually start migrating when the water level increases because of the seasonal
changes (start of the monsoon season).

4. INDIGENOUS DESIGN OF AN INTEGRATED VISUAL AND ACOUSTIC SURVEY
SYSTEM (IVAS)

4.1 Background
The conventional method of counting dolphins is to have trained dolphin watch personnel count the

dolphins manually when they surface. Usually 3 persons looking in designated sectors ahead of the moving
boat keep an account of dolphin sightings, taking special care not to have double counts. This is a tedious
manual process that is prone to error, more so as the dolphins are underwater for more than 90% of the
time and come to the surface only very briefly for breathing. This visual method may not provide us the
exact population of dolphin in a particular area of the Ganges River due to human errors, weather
conditions and visibility. Underwater detection of dolphin clicks, on the other hand can be done with
hydrophones that can serve a major complementary role for obtaining more reliable dolphin counts.

IVAS addresses this problem by novel use of technology and unique design to accurately monitor
Ganga dolphin numbers and habitat. IVAS is an integrated system of high definition cameras to survey
the river surface, and hydrophones for underwater acoustic based click observation. The hydrophones
are tuned to detect the bio-sonar clicks of dolphins as they forage for food. Figure 12 demonstrates IVAS
concept with the help of 3 panels. The uppermost
panel shows the situation where the dolphin is
underwater, emerges out of water surface and re-
submerges. The central panel shows how it would
be captured by a video camera, only when it
briefly surfaces. The lowermost panel shows the
bio-sonar clicks in the frames prior to and after re-
submergence. In this manner, IVAS may be
considered to be a complementary use of cameras
and hydrophones to detect dolphins.

The IVAS system consists of a processor that
uses the signals from the hydrophones to
determine direction and distance of the dolphin. To
accomplish its task, the IVAS system consists of the
following sensors:

Fig. 11. Monthly trends of average click number changes, average X and
its standard deviation SDX in three monitoring phases [4]

Fig. 12. 12 IVAS concept
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 A set of 3 video cameras for surface surveillance that can also be expected to replace human observers
for more consistent counts.

 Acoustic System of typically of 3 hydrophones (underwater sensors) for underwater detection of the
dolphin clicks and to localize the dolphins.

4.2 Dolphin encounter with IVAS
We demonstrate the power of IVAS concept from an episode where an actual lone dolphin was

observed both by the cameras and by the hydrophones. These results are discussed below.
The snapshots shown in the two panels in Figure 13 below are the observations from cameras and the
hydrophone data. Clips in the upper panel are taken from the video cameras for the above-water surface
surveillance and the clips in the lower panel are the simultaneous underwater hydrophone observations
on an oscilloscope. They depict the following:-
 The first clip shows the situation of presence of a dolphin under the water surface which is confirmed

by the presence of dolphin clicks recorded by underwater sensors.
 The second clip shows the presence of dolphin on the surface of water (seen inside the red circle) as

observed and recorded by the camera, while dolphin clicks are no longer seen.
 The third clip shows the situation where the dolphin dives back into the water which can be seen by

absence of it on the surface and re-appearance of the dolphin clicks recorded by underwater sensors.

Fig. 13. Demonstration of IVAS concept with real data

4.3 Implementation of IVAS
The IVAS consists of a triangular array of 3 hydrophones that receive underwater dolphin clicks

(Figure 14). The hydrophones are configured nominally as an isosceles triangular with base 3m and height
5m. It has been noted in our studies (section 2.2, 3.2) that the least ICI of the dolphins is about 10 msec.
The maximum expected propagation time delay between hydrophones of the IVAS array for chosen
dimensions is under 5 msec which ensures that two adjacent clicks on the hydrophones are unambiguously
analysed without any overlap with the next click.

A given source will be observed at times T1, T2, T3 at hydrophones H1, H2 and H3 respectively (refer
Figure 14). The observed inter-hydrophone delays are computed for localization of source: the source
would lie on the equi-delay locus represented as a hyperbola. Thus, hyperbolas can be drawn for each
pair of hydrophones, the intersection gives the actual location of source. Figure 14 shows two such
hyperbolas H32 and H31 passing through the source.

The receiver (Fig. 15) processes the hydrophone signals which are amplified and then digitized in a
data acquisition system (NI CDAQ-9134). The digitized data is transferred to a laptop PC for recording
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and analysis. The three video cameras for observing the river surface are connected to a Networked Video
Recorder (NVR) and also connected to the laptop PC for control and analysis. The laptop PC is used to
monitor the audio and video signals and to store the data. The complete system is designed to run on
battery.

Acoustic files from CDAQ are stored with time stamp with 1 microsecond resolution and are saved
on every minute basis. The time delays of the click signals between the hydrophones are extracted that
are then used to estimate of Range and Bearing of the dolphin clicks as explained in Figure 14. A database
of time delays, range, bearing of the source up to the desired range was first created offline for the IVAS
array. The extracted time delays from the actual click data are matched with this database to get the best
estimate of range and bearing angle and hence the source location. The IVAS system as installed on a
boat is shown in Figure 16. The three video cameras are set for identical FOV and pixel resolution.

Fig. 14. IVAS triangular hydrophone array geometry showing intersecting
equi-time delay hyperbolas for localization of source

Fig. 15. IVAS receiver block diagram
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Fig. 16. IVAS hydrophone array: (a) Rear two hydrophones and cameras, (b) front hydrophone

(a) (b)

Acquisition of videos and image data is done through NVR. The NVR clock is synchronized with that of
the CDAQ to enable obtaining relevant frames from the video data to confirm the presence of a dolphin
as and when required.

4.4 Field calibration of IVAS hydrophone array localization
Field calibration of IVAS was conducted to check its range and accuracy. In order to calibrate the

system we used two boats so that we could transmit dolphin-like sounds from one and receive them at
the other boat equipped with IVAS (Fig. 17).  Transmission of signal pulses is done from various distances
from the receiver boat that receives the incoming signal pulse on the three hydrophones. During this test,
the precise distance of the transmitter boat was found using a Laser Rangefinder.

Fig. 17. IVAS Calibration trials with laser range-finder
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The laser range finder gives the actual visual distance, while the underwater acoustic range from the
acoustic data is estimated using the IVAS hydrophone array system as discussed above. The table below
shows the compiled results of validation of distance between 20 metres to 260 metres, assuming a nominal
speed of sound of 1500 m/sec.

Table 1. Validation of visual and acoustic range by IVAS.

Visual Range from Laser Acoustic Range estimated from IVAS

Range Finder (metres) hydrophone data (metres)

20 26.9

50 53.14

97 102.39

150 152.97

200 209.99

260 260.92

The relatively small errors of only a few meters between the laser range finder and acoustically
calculated range are due to constant drift between source and transmitter in the river's current, and use
of an approximate sound speed in water. This study has adequately demonstrated that the algorithm for
determining dolphin range from acoustic data matches very well with the visual range even for distances
as large as 250 metres. So, in principle, dolphins may be detected over as much as half a kilometer diameter
of the river. This system can be deployed over extended periods to study dolphin movements at fixed
locations, or even while moving the boat at low speeds. At higher speeds, large engine noise becomes a
problem by obscuring dolphin clicks. In the next section, we show how we have modified the IVAS array
to receive signals only from the front sector of the boat and hence avoid engine noise. This modification
is well-suited for counting dolphins from a moving boat.

5. ACOUSTIC BASED DOLPHIN CENSUS USING IVAS
This section provides a summary of the

dolphin census feasibility trial using a modified
IVAS conducted on 21st December 2018 near
Narora, UP. The field trial was conducted to
validate the technique developed for acoustic
based census with visual confirmation of
dolphins. The experiment was conducted between
Basi Ghat and Rajghat in Narora. Several
instances were encountered where dolphin was
briefly captured visually on the surface by the
cameras while it was tracked acoustically for
several minutes.

5.1 Principle of Acoustic Census
A pair of hydrophones is assembled and

placed in the front of the boat as shown in Fig. 18.
The separation between the two front in-line
hydrophones (H1 and H2) is kept as 50 cm that
would give a maximum inter-hydrophone
propagation time delay of about 330
microseconds. Two air filled bottles are placed
behind H1 and H2 hydrophones and act as an

Fig. 18. Assembly of cameras and hydrophones with
air-filled bottles (array lifted out of water)
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Fig. 20. Plot of observed time delay between H1 and H2 versus time

acoustic discontinuity to prevent engine noise
from reaching the hydrophones. In order to
properly detect and count the dolphins in the
front sector of the boat, the boat moved at a
speed of 8-9 km per hour. A third
hydrophone H3 without a backing bottle was
used only as a reference hydrophone to
demonstrate the effectiveness of the air
bottles. In addition, three cameras were also
deployed covering a forward 180 degree field
view, 60 degree sector coverage of each
camera, replacing three human observers
used in a conventional visual census exercise.

The time delay between H1 and H2
represents the angle of the dolphin from the
boat heading: 0 delay refers to the front of the
boat, while negative and positive values refer
to either side of the boat (Figure 19). A typical
time delay plot is shown in Figure 20. Noise
spikes mark as random dots, while dolphin
clicks follow a pattern of delays (in red circle)
corresponding to the consistent change in
angle due to relative motion of boat and
dolphin. The dolphin click region can be
zoomed to study the delay track.

Fig. 19. Time Delay measurement gives
direction of dolphin click
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6. RESULTS AND OBSERVATIONS
The 3 hydrophone signals and video from 3 cameras were recorded on 21st December 2018 at Narora.

There were several instances when dolphins were encountered both visually and acoustically. Two of
these encounters are discussed below.

Acoustic recording of an instance where dolphin clicks were observed is given below in Figure 21
which shows signals from the three hydrophones.

Fig. 21. Acoustic recording depicting dolphin clicks between 12:42:01pm and 12:42:25 pm

Fig. 22. Acoustic recording depicting dolphin click and surfacing time

Here, the red, yellow (overlapping) and green waveforms represent H1, H2 and H3 hydrophone
respectively. It can be observed from the above image that the signals recorded by H3 (green) have more
noise compared to those recorded by H1 and H2. This shows that by using air-filled bottles, the engine
noise is reduced substantially. The variation in the click envelope is due to the meandering movement of
the narrow dolphin beam pattern relative to the hydrophone location.

While travelling downstream with a speed of 8-9 km/hr, at around 12:48 pm a dolphin was captured
both acoustically and in the camera as shown below (Figures 22 and 23b). The surfacing time (when the
dolphin comes out of the water surface to breathe) was between 12:48:30.211111 and 12:48:31.149289, which
is about 1 second duration and indicated by absence of clicks. The time offset between the independent
acoustic and video recordings was been obtained and corrected. The synchronized time is mentioned on
each camera image (Fig 23b).

The zoomed dolphin track (time delay, Figure 23a) shows a plot of delay vs time, between H1 and
H2. X-axis represents time in seconds and Y-axis represents delay in microseconds. Not all clicks have
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Fig. 23. (a) Plot of the change in delay (track of 1 min 35 secs) and the highlighted red part
here depicts the surfacing time starting from 12:48:30.211111 and ending on 12:48:31.149289

(b) Video grab of left camera showing dolphin in sight

been marked in the plot for clarity. Figure 23b shows the video grab of the surfaced dolphin corresponding
to the time that clicks are absent, indicated by the red line in the plot. The clearly defined pattern in the
time delay plot can be used to detect the dolphins. Such patterns of time delays will be seen for each
dolphin that is encountered, thus we can estimate the number of dolphins by simply counting these dolphin
tracks as the boat moves through the river. Double counting is avoided since the boat moves faster than
the dolphin, which is soon left behind.

Another instance of dolphin encounter with corresponding delay plots is shown in figure 24 below.
Once again, the dolphin surfaces at the time indicated by the red line in the plot.

(a)

Fig. 24. (a) Plot of the change in delay (track of 4 mins 36 secs) and the highlighted part
here depicts the surfacing time starting from 12:43:25 and ending on 12:43:28

(b) Video grab of front camera showing dolphin in sight

(b)

(a) (b)

The trial has successfully demonstrated that IVAS can be used for dolphin census. The practical concern
of blocking the engine noise using air-filled bottles adjacent to the hydrophones has been also addressed.
The presence of dolphins was recorded both visually and acoustically. We have been able to validate the
acoustic-based counting method with confirmatory dolphin sighting obtained in the video cameras while
moving at a speed of about 8-9 km/hr. While acoustic tracks last over 1 minute, the sightings are very
brief, under 3 seconds only. This method can, therefore, be effectively used for conducting dolphin census
by non-experts since the dolphins can be more objectively counted from the recorded data, both visually
and acoustically.
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ABSTRACT

Physical exercise induces fatigue on the human body. It leads to changes in the breathing pattern.
The speech produced under this condition has been termed as out-of-breath speech. The air coming
out of the lungs act as the source for generating sounds. Hence, the speech sound appears different
from that of the normal state. In this work, the focus is on the analysis of the distinctive
contribution of the source and the vocal tract (VT) under physical exertion. Harmonic peak to
energy ratio (HPER) features are extracted from the integrated linear predicted residual (ILPR)
signal, which is an approximation for the source signal. The frequency response of the VT filter
is rendered in terms of Linear prediction (LP) coefficients. Both the source and the VT features
are statistically evaluated under the normal and the out-of-breath states. The source signal is found
to get significantly affected under physical exertion than the VT filter. A Gaussian Mixture Model
(GMM) classifier validates the above observation where source-based HPER features give a better
classification rate of 85.6% compared to 68.2% for the VT filter parameters.

1. INTRODUCTION
The speech signal is an acoustic signal that inherently captures the characteristics of both the system

and the source that produce it. The system is the VT and the source being the air expelled from the lungs.
The air, coming out of the lungs, gets modulated by periodical vibrating action of vocal folds which, in
turn, causes the voiced sounds[1]. Similarly, the unvoiced sound is produced when the vocal folds are
relaxed, and the turbulent air from lungs gushes through open vocal folds. A prior message, formulated
at the human brain as a cognitive task, is communicated through a combination of voiced and unvoiced
sounds. Hence, speech production is the result of a complex neuromuscular process. It requires a
synchronised functioning among the cognition process, the respiratory process, phonatory process and
articulatory process[2]. Any minor change in a speaker's physical and cognitive state can influence the
speaker's ability to control the speech production system. It is this complexity that makes the speech signal
a suitable marker for different health conditions[1] [3], emotional state[4], [5], speaker verification and
recognition[6].
When a person performs physical exercise, the need for more oxygen makes the person breathe faster
and deeper. In literature, this physical state of the person is called the out-of-breath state [7]. Inhalation
period becomes shorter, and the exhalation period becomes longer. If any attempt is made to speak, the
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produced sound appears different from that of the normal state. Fig. 1 shows the waveform and the
spectrogram of a sample speech segment for both the normal and the out-of-breath states. Some notable
changes are: shortened speech duration, damped higher frequency components in the voiced region, more
words are packed in a single breath cycle[8], a higher number of short breathing pauses, increased pitch
frequency (F0)[9], higher glottal open quotient, lower glottal close quotient, and waveshape is skewed
positively[10]. These characteristic changes led researchers to detect physical stress level and physical
exercise intensity by analysing the speech signal. Godin et al. used six different glottal features to recognise
whether exertion caused by physical task stress[9]. In two separate studies, Egorow[11] and Thuong[12]

attempted to estimate exercise intensity level under the influence of physical exercise. Deb et al.[7] used
speech spectral features to determine the level of breathiness in a spoken sentence. In another work, they
showed that different emotions accompany with different level of breathiness [5].
From the previous studies, it is evident that the speech signal is perceptually different under physical
exertion. As the speech signal is the result of a filtration action of quasi-periodic impulse source by VT
filter, both the source and the filter are expected to vary under stress. In this work, the aim is to assess
the independent behaviour of the source signal and the VT filter under physical exertion. The integrated
linear predicted residual (ILPR) signal[13] is used as an approximation to the source signal as it shows a
higher correlation with the derivative of electroglottograph (DEGG) signal [14]. To represent the VT, the
popular linear prediction (LP) coefficient representation is considered [15]. The details about ILPR and LP
coefficients is elaborated in Section 2. In Section 3, the statistical analysis of the spectral characteristics is
described, and finally, the conclusion is drawn in section 4.

Fig. 2. Block diagram for extracting the ILPR source signal from its corresponding speech signal.

Fig. 1. Spectrogram of normal and out-of-breath speech.
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2. METHODOLOGY
Depending on the nature of the glottal source, i.e., quasi-periodic impulse train or noise, the speech

becomes voiced or unvoiced, respectively[15]. In this work, our focus is on the voiced regions. Using an
energy-based threshold, Th = Eavg; the voiced regions are separated from the unvoiced and the silence
regions, where Eavg is the average frame energy[7]. Now considering a 20ms voiced segment of speech,
the ILPR source is estimated by LP-based inverse filtering. The corresponding filter coefficients are stored
as representative of the VT that captures the frequency response of the VT filter. The spectral characteristic
of the source signal is analysed in terms of the harmonic peaks of its magnitude spectrum. The detailed
procedure for analysing the ILPR and the VT is described as follows.

2.1 ILPR Source extraction
ILPR is a source estimated from the speech signal that has a higher correlation with the DEGG

signal[14]. ILPR filtering is performed to obtain this source signal. This filtering step involves inverse
filtering of the speech signal where the filter coefficients are estimated by LP analysis on the glottal trend
removed speech signal[13]. The advantage of ILPR over linear prediction residual (LPR) is that ILPR does
not have sharp bipolar peaks at the glottal closing positions. Hence, it appears more like the natural source
signal[14], [13]. Fig. 2 shows a block diagram of the extraction of the ILPR source signal from the speech
signal. The steps for ILPR extraction begins with DC offset removal and amplitude normalisation belonging
pre-processing block. The block following it detects the voiced region from the speech signal using an
energy-based threshold. For a 20 ms segment of the voiced region, the glottal trend is removed by passing
it through a pre-emphasis filter H(z) = 1 – z–1. The LPC block employs the autocorrelation method to
compute linear prediction coefficients (LPC) using the filtered signal segment [15]. The initial speech segment
is passed through an inverse filter which has the LPCs as the coefficients of the denominator polynomial.
The output of the inverse filter is called ILPR signal.

Fig. 3. For the speaker 'SK', the error bar plot shows mean and standard deviation of the
HPER features evaluated on the ILPR signal.

2.2 Harmonic peak to energy ratio (HPER)
It is the ratio between the harmonic peak magnitudes and the energy of the segment of speech under

consideration[5]. It has been shown that the harmonic structure of the speech signal gets influenced by
cognitive load[5], [16]. For different emotions, the contribution of energy by the harmonic peaks are different.
In this work, the first fifteen harmonic peaks are taken into consideration. The feature vector is constructed
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by appending the first fifteen HPER random variables HPER = [HPER1, HPER2,..., HPERL]. Here, L is set
to 15. The following procedure is followed for computing HPER feature

(i) A 20 ms segment is considered from the voiced segment of the speech signal at every 10ms
interval.

(ii) The segment is then passed through the ILPR filter for extracting the source signal.
(iii) Autocorrelation is then performed on the ILPR source to find out the fundamental period (T0).
(iv) The magnitude spectrum of the ILPR source is estimated using 1024 point discrete fourier

transform (DFT).
(v) The first harmonic peak (H1) is obtained by picking the peak within ±5% range of fundamental

frequency (f0) where

0
0

1  f
T

 (1)

(vi) Other harmonics peaks are obtained within ±5% range of f0 at every ithmultiple of f0, where i =
2, 3..., L.

(vii) Harmonic magnitudes are normalised by the total energy of that signal segment.
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where, i = 1, 2,..., L and n = 1, 2,..., N. xm(n) is the mth segment of the speech signal of size N. E
is the total energy in that segment.

2.3 Vocal tract information
The LP analysis based method has been used for extracting the vocal tract spectral information from

the speech segment. It is a widely used method for parameterising the VT contribution of the speech
signal[15], [17]. As per the LP procedure, each sample of a signal segment xm(n) is an approximation by a
linear combination of a fixed number of past sample values. This approach allows the signal segment to
be modelled by an all-pole filter. These coefficients of this filter are the manifestation of the VT in its
parametric form. This kind of representation helps in portraying the spectral characteristics of the VT with
infinite resolution in frequency. Here, the order of the all-pole filter is set to 14. It is as per the convention
of sampling frequency fs in kHz plus four[13].

3. STATISTICAL ANALYSIS
The out-of-breath stress speech corpus[7] has been used for analysing the effect of physical stress. The

features: LP coefficients, as well as the HPER features, are extracted as per the procedure given in Section
2. The mean values of these features for the normal and the out-of-breath states show their respective
trend. Gaussian mixture model (GMM) classifier is used to determine separability of the two cases using
the spectral features. The classification ability is quantified by three performance measures: specificity,
sensitivity and accuracy. A five-fold cross-validation approach is followed where the whole data set is
split into five sets of equal size; one set is used for testing and others for training. The procedure is
continued for five times by changing the test set. The final result is expressed as the average of the measures
for the five iterations.

3.1 Out-of-breath corpus
The out-of-breath corpus has been recorded by Deb et al. for assessment of breathiness in the speech

signal under physical exercise condition[7]. It contains speech signal data recorded under three stress
conditions: normal, out-of-breath and low-out-of-breath. Eight male and five female participants took part
in the recording process. They were asked to utter a set of twenty English sentences under three stress
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conditions. The Out-of-breath speech was recorded after the speaker underwent jogging for six minutes.
With a resting period of one minute, speakers repeated the sentences which were grouped as low-out-of-
breath. The normal set of speech signal was recorded earlier when there was no physical effort by the
speakers. The corpus contains 947 speech samples: 314 normal, 316 low-out-of-breath and 317 out-of-breath
cases. In this work, speech samples under normal and out-of-breath conditions are taken into study. The
speech samples are down-sampled to 10kHz for analysis.

3.2 Gaussian Mixture Model (GMM) Classifier
GMM treats each class of data as a mixture of Gaussians. Thus, it attempts to capture the variability

in VT shape and glottal flow probabilistically [15]. Each class of stressed speech is represented by a gaussian
mixture model  = {i, µi,i}, where i is the weight of the ith component in the mixture; µi and i are the
component mean vector and covariance matrix respectively. Here, the mixture components are assumed
to have full covariance. The model parameters are estimated by expectation-maximisation (EM)
algorithm[18]. The classification performance is measured by computing maximum a posterior probability
(MAP) estimate. An utterance belongs to that class for which it shows highest MAP value. The MAP is
estimated as :

( / ) ( )
( / )  

( )
j j

j
P X P

P X
P X
 

  (4)

where, j = 1,2,...,C; X = [X0, X1,..., XM–1] is the collection of feature vectors; P(j) is the a priori probability;
P(j|X) and P(X|j) are the posterior and likelihood probability densities respectively. In this work C = 2
forperforming binary classification.

4. RESULTS AND DISCUSSION
Fig. 3 shows the error plot

corresponding to the HPER features
extracted from the ILPR source signal. It
plots the variation of mean and standard
deviation values for the HPER features. For
another two speakers JF and SC, the Fig. 4
shows probability density functions of the
third and eighth HPER features extracted
from the ILPR source. From the figure, it
can be observed that the average
contribution of energy by the harmonic
peaks is lower in case of the out-of-breath
state than that of the normal state. A
similar result is seen when the ILPR based
HPER features are considered on the
whole corpus as given in Table 1. It shows
that all the HPER features, except the
HPER1, have lower mean values. This
characteristic indicates that the average
energy contribution of the harmonics to the
speech signal is lower for out-of-breath
state than the normal state. A similar result
can be observed for the HPER features
extracted from the speech signal. Table 2
shows the mean for HPER features
extracted directly from the speech signal

Fig. 4. Plot of probability distribution functions for the
ILPR based HPER3 and HPER8 features for speaker JF in (a
and b) and SC (c and d), respectively. The normal and the
out-of-breath states are in blue and red color, respectively.
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considering the entire corpus. Observing the mean values for both the ILPR source and the speech signal,
we can imply that the behaviour of the harmonics of the source is manifested in the harmonics of the
speech signal. From table 4, it can be seen that ILPR based HPER features have a higher classification
rate of 85.2% than that of the features extracted from the speech signal with an accuracy of 81.6%. The
reduction in accuracy may be due to the spectrum colouration provided by the VT.
The above results give evidence that the spectral properties of the source signal vary from the normal to
the out-of-breath state. On the other hand, to understand the behaviour of the VT under the out-of-breath
and the normal states, LPC based representation of the VT is considered. Table 3 shows the mean values
of the LP coefficients computed over the entire corpus. Here, the mean values are rounded off to the second
decimal point. The corresponding magnitude spectrum and, the pole-zero plot is shown in Fig. 5. Both
the plots show that the characteristics are quite similar, indicating that the VT is not much influenced in
an average sense under the normal or the out-of-breath states. The mean square error (mse) is computed
separately for the magnitude spectrum of the VT and the mean values of the HPER peaks for both the
states. The mse is found to be 0.12 for the VT, which is five times smaller than the mse value of 0.61
computed for the fifteen source harmonics.

Table 1. Mean values (in dB) for the fifteen HPER features for ILPR source signal.

Acronyms are N: Normal, OBS: out-of-breath.

Index  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N 10.3 4.9 0.2 -2.4 -4.7 -6.5 -7.6 -9.0 -10.0 -11.1 -12.2 -13.1 -13.8 -14.5 -15.0

OBS 10.4 3.7 -0.6 -3.3 -5.5 -6.9 -8.0 -9.7 -11.0 -12.2 -13.0 -13.9 -14.5 -15.2 -15.8

Table 2. Mean values (in dB) for the fifteen HPER features for speech signal.

Acronyms are N: Normal, OBS: Out-of-breath.

Index  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N -3.7 -3.1 -7.6 -13.0 -18.3 -22.5 -25.1 -27.2 -29.0 -30.4 -31.9 -33.2 -34.4 -35.8 -37.0

OBS -3.2 -3.4 -8.7 -15.8 -21.5 -24.7 -26.7 -29.3 -31.3 -32.7 -33.7 -35.1 -36.6 -37.8 -38.6

Table 3. Mean values for LP coefficients. The acronyms are N: normal, OBS: out-of-breath.

Index  1 2 3 4 5 6 7 8 9 10 11 12 13 14

N -1.01 0.72 -0.78 0.69 -0.60 0.60 -0.50 0.55 -0.18 0.29 -0.24 0.15 -0.09 0.07

OBS -1.08 -0.80 -0.87 0.77 -0.72 0.76 -0.63 0.63 -0.26 0.30 -0.24 0.15 -0.09 0.07

Table 4. GMM classification result using LPC and HPER features. The HPER features are

extracted from ILPR and speech signals, respectively. All values are in %.

Features Specificity Sensitivity Accuracy

LPC 70.20 66.67 68.4

HPER
ILPR

91.84 78.82 85.2

HPER
speech

74.28 89.02 81.6

HPER
speech

 + LPC 89.79 87.45 88.6

HPER
ILPR

 + LPC 90.20 91.76 91.0
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Fig. 5. Magnitude spectrum and pole-zero plot for VT filter with respect to LP coefficients
averaged over normal and out-of-breath samples respectively.

(b) The symbols ,  and  represent the zeros, the poles for normal and the
oles for out-of-breath cases respectively.

(a) Magnitude spectrum of VT filter.

The mse values suggest that the source experiences higher variation under physical exertion than the VT.
Table 4 shows the classification accuracy using LPC. It is found to be 68.4%. This is quite low compared
to the HPER features extracted from the ILPR source or directly from speech.
The accuracy results in Table 4 suggest the spectral characteristics of the ILPR signal have larger changes
under physical exertion. Thus, the source signal is more capable of separating the normal and the out-of-
breath speech with an accuracy of 85.6%. The spectral features of the VT represented by LP coefficients
seem to have moderately affected due to physical exertion. Thus, classification accuracy is found to be
68.4%. However, the highest classification accuracy of 91% is obtained by combining the spectral features
derived from both the source signal and the VT. This result is higher than the spectral features derived
directly from the speech signal.

5. CONCLUSION
In this work, the effect of physical exertion on the source signal and the VT is analysed. The source

signal is estimated from the speech signal by the ILPR filtering, and the LP coefficients parameterise the
VT. The spectral analysis of the ILPR signal showed that the energy contributed by harmonic peaks is
different for the normal and the out-of-breath states. The harmonics at higher frequency have a lower
average magnitude in case of the out-of-breath state. Using GMM classifier, the ILPR based HPER features
showed an accuracy of 85.6% for classifying the normal speech from the out-of-breath speech. This is better
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than the speech-based HPER features. On the other hand, the analysis of VT using LP coefficients does
not show any major changes. The GMM classifier shows a moderate accuracy of 68.4% for distinguishing
the state of a speech signal using LP coefficients. This implies that the effect of physical exertion does not
have any significant influence on VT. For performing classification and determining the state of a speech
sample, the combination of source and VT features are found to give the highest accuracy of 91%.
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ABSTRACT

Quasi-periodic glottal vibrations are considered as the primary source of excitation during speech
production. Excitation (glottal) source signal can be estimated by using linear prediction-based
inverse filtering operation. Epochs, fundamental frequency, periodicity, the strength of excitation
(SoE), and the shape of the glottal pulse are considered as the important attributes of excitation
source and used in the analysis of speech. In this article, the importance of excitation source
information in various applications of speech processing, namely, enhancement of noisy speech,
speaker verification, speech synthesis, and detection of speech disorders are briefly presented.
Speech regions anchored around the epochs can be characterized as high signal-to-noise ratio
regions, and processed for speech enhancement. The features derived from the estimated excitation
source signal are found to be rich in speaker-specific information and used in speaker verification
tasks. Inclusion of voicing decision, SoE, aperiodicity in statistical speech synthesizers showed a
significant improvement in the synthesized speech quality. The SoE, fundamental frequency,
glottal activity regions, and glottis landmarks are used in the clinical applications of speech.

1. INTRODUCTION
Speech is produced by the excitation of a time-varying vocal tract system [1]. The excitation to the vocal

tract system may be produced due to the quasi-periodic vibration of vocal folds (voiced sounds), the
formation of narrow constriction (fricatives), and abrupt release of the completely constricted vocal tract
(plosives)[2]. Glottal vibrations are considered as the primary source of excitation in the speech production
system[1],[3]. The extraction of features or parameters from the time-varying speech signal is one of the
significant objectives of speech signal processing. Most of the speech-based applications like speaker
verification, speech recognition, text-to-speech synthesis, use conventional short-time spectral features,
e.g., Mel-frequency cepstral coefficients (MFCCs) and linear prediction cepstral coefficients. These features
are computed by the short-time processing of speech signals using a window size of 10-30 ms [4]. These
features capture the vocal tract characteristics; however, the excitation source information is not being
explicitly captured.
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Mathematically, excitation source information is represented as the train of impulses, which are
separated by the pitch period[4]. This impulse train is generally used in speech synthesizers. Fig. 1
demonstrates the importance of excitation source information. The speech signal and spectrogram are
shown in Fig. 1(a) and (b), respectively. The impulse train corresponding to the glottal excitation is plotted
in Fig. 1(c), where the impulses are separated by pitch period (T0). This impulse train is considered as the
approximation of source in most of the speech synthesizers. However, apart from this, the explicit use of
excitation source information is not widely used in speech-based applications.

In the spectrogram (Fig. 1(b)), the vertical striations correspond to the glottal closure instants (GCIs)
or epochs[5]. In the spectrogram (Fig. 1(b)), regions around the epochs indicate the presence of a high
signal-to-noise ratio (SNR) in terms of relatively darker intensities. The processing of such high SNR regions
around the epochs is carried out for the enhancement of noisy speech signals[6] and formant estimation[7].
The anatomy of vocal folds and its vibrating pattern vary among the speakers. Hence, the speaker-specific
information derived from the excitation source is used for speaker verification[8],[9]. The strength of
excitation (SoE) is another important parameter and its applications are demonstrated in voicing
detection[10],[11], pathological voice detection[12] and speech synthesis[13],[14].

This article reviews the importance of excitation source information in different speech processing
applications. The paper is organized as follows: The extraction of excitation source information from the
speech signal is explained in Section II. The usefulness of excitation source information in speech
enhancement and speaker verification systems is described in Section III and IV, respectively. The
applications in speech synthesis and clinical systems are mentioned in Section V and VI, respectively.
Finally, the paper is concluded in Section VII.

Fig. 1. Significance of excitation source information. (a) Speech waveform,
(b) wideband spectrogram and (c) impulse train separated by pitch period.
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2. EXTRACTION OF EXCITATION SOURCE INFORMATION
Speech is considered as the output of the vocal tract system excited by the excitation source signal.

Since both source and system information is embedded in a speech signal, estimation of the source signal
is a primary step in the excitation source-based processing of speech. According to the linear source-filter
theory of speech production[15], the speech signal s[n] resulted due to the convolution of excitation source
e[n] and vocal tract response h[n]. Thus, s[n] can be written as,

[ ]  [ ] *  [ ]s n e n h n (1)

Linear prediction (LP) analysis is the most widely used approach for the estimation of h[n]. The vocal
tract system's transfer function H[z] is modeled by an all-pole filter[4]. H[z] is given by

–
1

1[ ]  
1

p k
kk

H z
a z





 (2)

Fig. 2. (a) DEGG, (b) speech waveform, (c) LP residual, (d) Hilbert envelope of LP residual and
(e) ZFFS superimposed with epochs and their strength of excitation (SoE).
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where, ak, k = [1, p] are the LP coefficients and p is the order of the LP model. The LP residual e[n] i.e., the
inverse filtered signal is given by

1
[ ]  [ ]  [ – ]

p
kk

e n s n a s n k


   (3)

The LP residual is widely used as the representation of the excitation source signal[16]. Fig. 2(a)-(c)
demonstrates the differenced electroglottograph (DEGG) signal, speech signal, and LP residual signal,
respectively. The large negative peaks of DEGG correspond to the GCIs, around which the LP residual
shows sharp peaks.  The LP residual is bipolar.  Hence, Hilbert envelope of LP residual is computed to
emphasize the peaks around epochs[16] and it is shown in Fig. 2(d).

Estimation of source features from the inverse filtered speech critically relies on the accuracy of LP
modeling. However, under noisy conditions and high-pitched speech, the LP modeling may not be accurate
due to the presence of non-stationarity. To alleviate such problems, methods those estimate the glottal
source features directly from the speech signal are proposed[17]. Zero frequency filtering is one such
method, which estimates the epoch locations and their strength directly from speech signal[17]. Zero
frequency filter (ZFF) is realized by the cascading of two ideal resonators, whose poles are located on the
unit circle in the Z-plane. The trend of the filtered signal is removed using a local mean subtraction method.
The trend removed filtered signal is referred to as zero-frequency filtered signal (ZFFS). The slope of ZFFS
computed at each epoch location is referred to as SoE[17]. ZFFS and estimated epoch locations along with
the SoE are shown in Fig. 2(e).

The estimated source features from LP residual and ZFFS are widely used in several applications,
such as speech enhancement, speaker verification, voicing decision, TTS, and pathological speech analysis.
These applications are described in the subsequent sections.

3. ENHANCEMENT OF NOISY SPEECH
Conventional speech enhancement methods involve the spectral modeling of noise from non-speech

regions. The noise characteristics are estimated from the non-speech regions and subtracted from the
degraded speech signal to get the enhanced signal. The performance of such methods critically depends
on the accuracy of noise estimation. However, noise estimation may be difficult in real-time, as the noise
characteristics randomly vary over time. Alternatively, temporal enhancement algorithms are proposed
in the literature[6],[18]. In[7], processing of the excitation source signal, such as LP residual, is carried out
for the noisy speech enhancement. The basis for the temporal enhancement method is that human beings
perceive the speech by capturing the regions from high SNR regions and then extrapolates the low SNR
regions. Hence, the temporal enhancement methods involve the identification and enhancement of high
SNR regions in noisy speech. In the temporal enhancement, the LP residual is weighted at two levels,
namely, gross and fine levels. Gross level weight highlights the high SNR regions of 40-100 ms, whereas
fine level weight emphasizes the regions of 2-3 ms. Fine-level processing involves the enhancement of
regions around the epochs. Because, around the epochs, impulse-like energy is delivered to the vocal tract.
Further, the LP residual is multiplied with the weight function derived by emphasizing high SNR regions.
The weighted LP residual is used to excite the time-varying all-pole filter derived from the noisy speech
to generate the enhanced speech signal.

Based on the concept of the excitation source-based speech enhancement approach proposed in[18],
various temporal enhancement algorithms are proposed in the literature. These algorithms involve the
enhancement of speech in the presence of environmental noise [18],[19], reverberant noise[6],[20], multi-speaker
noise[21] and multi-channel speech[22]. A concept of foreground speech enhancement is proposed in[23].
Authors of[23],[24], applied the concept of temporal enhancement in fore-ground speech enhancement. In [24],
a zero band filtering method (a modified version of ZFFS) is used to detect the epochs, and later, these
epochs are used to identify the fine-level weight function. The gross level weight is derived using excitation
strength, normalized autocorrelation peak strength, and modulation spectrum features. The significance
of foreground speech enhancement is demonstrated in the spoken query detection system[25].
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4. SPEAKER VERIFICATION AND SPOOF DETECTION
The importance of excitation source information is also demonstrated for speaker verification

applications. Experiments in[26] showed that humans can recognize people by listening to the LP residual
signal. This statement motivated the researchers to explore the excitation source for the extraction of
speaker-specific information. In[27], authors showed that synthesized speech using random noise, instead
of LP residual contains less speaker-specific information. A combination of source feature, i.e., the energy
of the LP residual with the vocal tract feature, i.e., linear prediction cepstral coefficients (LPCCs) resulted
in an improved speaker recognition performance over LPCCs alone[28]. Authors of[8] carried out a detailed
experiment to extract speaker-specific information from the LP residual using the auto-associative neural
network (AANN) framework. The experimental results showed that the LP residual computed using the
LP order of 8-20 can represent the speaker-specific information best. Also, the authors showed that AANN
requires significantly less amount of data for training the speaker model.

Motivated by the presence of speaker-specific information in LP residual[8], a framework for the
speaker verification using short-utterance is demonstrated in[9],[29]. The work utilized different attributes
of the excitation source, i.e., Mel power difference of spectrum in sub-band, residual Mel-frequency cepstral
coefficient, and discrete cosine transform of the integrated linear prediction residual (ILPR). These three
features emphasize the different attributes of source, namely, periodicity, smoothed spectrum information,
and shape of the glottal signal, respectively. The performance of the speaker verification system is
evaluated using the NIST SRE 2003 database. The experimental evaluation showed that for the 2s duration
of test speech, a combination of excitation source features resulted in better performance than the MFCCs.
Further, the fusion of source features with MFCCs significantly improves the performance of the Automatic
speaker verification (ASV) system for 2 sec of test duration. The details of the experimental results are
given in Table 1.

Table 1. Performance of mfccs, source fusion, and source features with MFCCs to show the

importance of source features for short utterance ASV system [9].

Test duration MFCCs Source fusion Source fusion + MFCCs

EER (%) DCF EER (%) DCF EER (%) DCF

10 sec 5.81 0.109 10.57 0.1964 5.1 0.0965

5 sec 10.52 0.1977 11.97 0.2252 8.18 0.1524

3 sec 16.94 0.31 15.85 0.2854 11.47 0.2148

2 sec 22.31 0.4128 20.19 0.3759 16.08 0.3025

Speaker verification systems are highly vulnerable to spoofing attacks, and it has been observed that
their performances get severely degraded when subjected to these attacks[30]. Researchers have explored
and showed the importance of excitation source features to detect one of the spoofing attacks, called a
replay attack. In one of the works[30], two source-based features, namely epoch feature and mean and
skewness of peak to sidelobe ratio of the Hilbert envelope of LP residual are explored. These features
characterize the excitation source behavior around the GCIs. After performing a score-level fusion of source
and state-of-the-art spectral features (constant Q cepstral coefficients (CQCCs) and MFCCs), the combined
system significantly outperforms the individual systems by a significant margin. However, in [30], authors
only utilize the information around GCIs and do not explore the dynamic characteristics of the source
signal between two GCIs. This information can be extracted with the help of an ILPR-based source signal,
which models the temporal shape of the voice source signal between two adjacent GCIs[31]. Fig. 3 shows
four glottal cycles of a speech signal and the corresponding ILPR for the original and spoofed signal. It
can be seen from the figure that the dynamics of the ILPR signal between two GCIs are distorted as that
of the original. It is expected that characterizing the source temporal dynamics between two GCIs may
give an improvement in the spoof detection system. The experiments are performed on the ASVSpoof
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2017 Version 2.0 database. On fusing the systems developed using CQCC features and proposed source
features, an equal error rate of 9:41% is achieved on the evaluation set.

5. SPEECH SYNTHESIS
The naturalness of synthesized speech highly depends on the modeling of excitation source

components. In the work[32], the importance of epochs in speech synthesis is demonstrated. Synthesized
speech by modeling the components anchored around the epochs showed perceptually more significant
than analyzing the entire speech signal[32]. Generally, the excitation source is modeled as random noise
in unvoiced sounds and periodic impulse train in voiced sounds. Due to this, the synthesized speech is
perceived as buzzy, monotonous, and unnatural[13]. Efforts have been made towards the modeling of
source parameters, such as periodicity, voicing decision, phase of excitation component, etc. to improve
the naturalness of synthesized speech. The use of excitation source parameters in speech synthesis is
explained in this section.

Different attributes of the excitation source, i.e., periodicity, energy, and asymmetry nature of excitation
source, are used for the voicing decision in[10]. The normalized autocorrelation peak strength and SoE
computed from ZFFS are used to represent the periodicity and energy aspects, respectively. Skewness to
kurtosis ratio (SKR) computed from the ILPR signal is used to represent the asymmetric nature of the
excitation source. Fig. 4(a) and (b) represent the speech waveform and ZFFS, respectively. NAPS and SoE
computed from ZFFS are plotted in Fig. 4(c) and (d), respectively. ILPR and SKR are shown in Fig. 4(e)
and (f), respectively. Fig. 4 shows that different attributes of excitation source highlight the voiced region
of speech. Hence, these three pieces of evidence are used to train the SVM, k-means, and deep belief
network classifiers for the voicing decision[11]. The voicing decision is incorporated in the HMM-based
statistical speech synthesizer[11]. Quality of the synthesized speech is evaluated using subjective and
objective measures and compared with the STRAIGHT, REAPER, and TEMP based voicing decision
methods. The excitation source-based voicing decision method showed better performance when compared
to the state-of-the-art methods.

Generally, the glottal source is characterized as periodic in nature. However, there is a noise component
present along with the periodic component. Researchers showed that the modeling of noise component,
i.e., aperiodic component improves the naturalness of synthesized speech. In[13], periodic and aperiodic

Fig. 3. ILPR signals for segments of genuine and spoofed speech signals. (a)-(b) and (c)-(d) represent the
speech signal and its corresponding ILPR signal for genuine and spoofed signals, respectively.
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components are estimated using the ILPR signal. The signal components below and above 4000 Hz are
separated. The low-frequency components of ILPR contain periodic, whereas high-frequency components
contain aperiodic components. Mel-cepstral coefficients (MCEPs) computed from the filtered signal are
used in the HMM-based speech synthesizer. The incorporation of the aperiodic component significantly
improved the naturalness of synthesized speech[13].

The strength of glottal vibration is relatively higher in the noise environment than the quiet one. In [14],
the peaks of the Hilbert envelope of LP residual are used for the characterization of Lombard speech.
The strength of peaks is relatively higher for Lombard speech than normal. Based on this analysis, the
post-processing of synthesized speech is carried out to improve its intelligibility in a noisy environment.

Fig. 4. Different attributes of the excitation source for voicing decision.
(a) Speech signal, (b) ZFFS, (c) NAPS, (d) SoE, (e) ILPR and (f) SKR feature.
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6. DETECTION OF SPEECH DISORDERS
The presence of organic vocal fold pathology or neurological disorders affects the periodicity

characteristics of glottal source. The period and amplitude of glottal vibrations are analyzed to characterize
the voice disorders. Conventionally, the speech signal of 20-30 ms is analyzed for the detection of voice
disorders. The knowledge of epochs can be utilized for the characterization of voice disorders [12]. Authors
in[12] compute the jitter and shimmer using the epochs and strength of excitation to analyze the normal
and pathological speech[12].  Fig. 5 demonstrates the importance of instantaneous pitch period and SoE
in the discrimination of normal and pathological voice signals. Variation of the instantaneous pitch period
(jitter) is high in the case of pathological speech than normal (Fig. 5(d) and (j)).  SoE captures the strength
of glottal vibrations. Variation of SoE (shimmer) also shows higher values for pathological speech than
normal (Fig. 5(f) and (l)). The usage of excitation source-based features showed improvement over PRAAT-
based features[33] in the classification of normal and voiced disordered speech[12].

Fig. 5. Analysis of the instantaneous pitch period and SoE derived from ZFFS for normal and
pathological speech [12]. (a)-(f) and (g)-(l) represent the speech signal, ZFFS, instantaneous pitch period

(T0) contour, a first-order absolute difference of T0, SoE contour, the first-order absolute difference of
SoE, for normal and pathological voice signals, respectively.
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The glottal activity regions are analyzed for the estimation of hypernasality severity [34]. Hypernasality
refers to the perception of abnormal nasal resonances in voiced sounds[35]. Voiced regions are detected
using the different attributes of the source proposed in [10]. The estimated hypernasality scores from glottal
activity regions showed a better correlation concerning the clinical ratings when compared to the
processing of the entire speech signal[34]. The presence of glottal vibrations is necessary for the
discrimination of voiced and unvoiced plosives. The presence/absence of glottal vibrations in the
production of unvoiced/voiced stops refers to the erroneous of glottal vibrations. These errors are referred
to as glottal activity errors[36]. The excitation strength feature computed using ZFFS is used for the
automatic detection of glottal activity errors in cleft lip and palate (CLP) speech [36].

The speech segments anchored around the onset and offset of glottal vibrations (glottis-landmarks)
are associated with the formant transitions. Processing of speech signals around the glottis (g) landmarks
is carried out to analyze the intelligibility of cleft palate speech [37]. Joint spectro-temporal features (2-
dimensional discrete cosine transform coefficients) extracted from the speech signal around the g-
landmarks showed better correlation concerning the clinical ratings of intelligibility. The effect of
supraglottal constriction on glottal vibrations is analyzed for the detection of misarticulated sounds
in[38],[39]. The excitation source characteristics are not only decided by the vocal fold structure, but also
by the vocal tract constriction. An increase in the vocal tract constriction inhibits the glottal vibrations.
The effect of supra glottal constriction on the glottal source is analyzed for the detection of misarticulated
trills and nasalized voiced stops in CLP speech[38],[39].

Voice onset time (VOT) is an important cue used in the diagnosis of dysarthria. VOT refers to the
interval between the onset of burst and the onset of glottal vibrations during plosives production [2]. VOT
values signify the control and coordination between the glottal source and vocal tract articulators. The
knowledge of the excitation source is necessary for the measurement of VOT. Algorithms have been
proposed by exploiting the periodicity and energy attributes of the excitation source signal [40],[41]. The
applications of VOT in the automatic classification of normal vs. Parkinson's disorders are demonstrated
in[42],[43].

7. CONCLUSION
In this article, the significance of the excitation source information in various speech-based applications,

i.e., speech enhancement, speaker verification, spoof detection, speech synthesis, and detection of speech
disorders are reviewed. The performance of these systems depends on the accurate estimation of source
parameters from the speech signal. In these applications, the excitation source information is derived from
the LP residual, and ZFFS. However, the LP residual is highly sensitive to noisy conditions and pitch
variations. Hence, methods for the robust estimation of source parameters from the speech signal need
to be developed.
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ABSTRACT

In this work, a MATLAB based graphical user interface (GUI) has been developed for assisting
students in learning concepts of speech signal processing. It is capable of real-time interactive
speech signal analysis. The study of speech processing and its application requires the
understanding of signal processing as well as machine learning concepts. A software having the
flexibility to demonstrate these concepts will be highly helpful for students as well as teachers. It
helps in complementing the classroom teaching of speech signal processing and its applications.
The GUI consists of three modules: Learning module, signal processing module, and stress
detection module. The learner module helps the user by giving a detailed walk-through of the
GUI. The real-time stress detection module is a real-time application of speech signal processing
and machine learning concepts. It can identify four stress classes: urgency, work-load (breathy),
pathological and, normal cases. It allows students to learn concepts of speech signal processing,
analyse the signals as well as experiment on them. Finally, it shows an application of the
knowledge acquired in the form of a real-time stress detection module where it demonstrates the
detection of stress from the speech signal.

1.  INTRODUCTION
Speech signal processing is an active area of research, and it is attracting a lot of attention from students

and researchers. Current classroom teaching takes help of presentations, printed materials and
programming assignments. Except for the programming assignments, students lack interactive sessions
which may help them to understand the concepts better. Therefore, there is a need for a unified system
consisting of all relevant speech signal processing tools and sample applications. This will help instructors
to demonstrate the concepts with minute details. At the same time, students can also use it on their own
to understand the concepts better. There are several software available on the internet for speech signal
analysis. But, most of them focus on a preliminary level of speech processing. The University College of
London has designed two software WASP and Speech Filing System (SFS). WASP is designed for
performing introductory acoustic analysis. SFS is a more powerful tool for a similar purpose. This software
performs standard operations like sound acquisition, replay, annotate, formant estimation, spectrographic
analysis and advanced operations like speech synthesis, recognition and supports software development
at user's end. Praat[1,2], and wave surfer[3] are two other software that are quite popular among the
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researcher community. These application software share the common tools like pitch extraction, pitch
variation, formant tracking, spectrographic study, signal annotation etc. However, these have not much
been used for classroom study by beginners. They also lack a proper speech processing application which
will excite students to pursue the domain further.

Stress recognition is a process of identifying stress class from the user's speech[4]. The characteristics
of the speech signal vary under different stress conditions which affect the performance of a machine in
case of human-machine interaction[5-7]. The causes of this stressed speech can be due to emergency
conditions, fatigue/physical environmental factor, pathological condition (disease), sleep deprivation,
perceived threat, glottal abnormalities, work-load, noisy environments (Lombard effect)[8]. Stress
classification can help improve speech and speaker recognition. It can have applications in (i) prioritising
emergency situations, (ii) medical situations, (iii) analysis of breathing pattern of a sportsperson, (iv)
assessing the quality of customer satisfaction in telecommunication industry and (v) forensic analysis of
the caller by the law enforcement agencies[9,10].

In this work, a new GUI has been developed. It aims at complementing the classroom teaching of
concepts of speech signal processing. It permits users to analyse the speech signal in real-time and to
experiment on it by providing different temporal and spectral signal processing. Features like signal
acquisition, resampling, playback, partial selection, autocorrelation, pitch estimation help a user in
processing the speech signal in time domain. At the same time, it has tools that can process the signal in
the frequency domain to produce spectrum using different windowing methods, spectrogram, estimate
formant structure etc. It also has some advanced functionalities such as linear prediction (LP) analysis,
LPCC, MFCC, residual signal generation, vowel generation and many more. At any time, in case of any
doubts regarding the concepts, the user can access the learner module to get the theoretical background.
A stress detection module is also included in this GUI as a real-time application for addressing the
challenges of detecting states of the stress of a person using the speech signal. This module can identify
stress classes like emergency, work-load, pathological and normal states. A new stressed speech database
IITG-stress Database is recorded consisting of above four stress classes, unlike the existing database which
contains styled stress classes like angry, sad, happy, anxiety etc.

The organisation of the paper is summarised as follows. The detail explanation of the proposed
architecture is given in Section 2. Feature extraction, statistical analysis and stress detection are carried
out in section 2.3. Finally, we conclude the work in section 3.

2. PROPOSED GUI ARCHITECTURE
The flow diagram of the proposed GUI is shown in Fig. 1. It consists of three sections: (i) Speech

Processing (ii) Learner and, (iii) Stress detection. An itemised list of the applications present in this GUI
is shown in Fig. 2. Speech processing
module encapsulates different speech
signal processing tools ranging from
standard ones like audio recording,
replaying, formant extraction, pitch
estimation, spectrographic study etc.,
to advanced tools like LPC, MFCC,
cepstral analysis, vowel generation etc.
Speech signal researchers can find this
module handy at their disposal.
Learner module gives the user a walk-
through of the GUI. In addition to
that, it also contains the basics of
speech signal processing concepts and
their references. The stress detection
section is basically a sample Fig. 1. GUI flow diagram.
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application showing the detection of stress conditions from a speech signal. The home page of this GUI is
shown in Fig. 3, which provides buttons to enter into the individual sections.

2.1 Speech Processing Module

Speech Processing module can be accessed from the Home screen by clicking the button 'Speech
processing', its user interface (UI) is shown in Fig. 4. It mostly consists of standard signal processing tools
like signal recording, replaying, sampling frequency variation, pitch calculation, normalised short-term
zero-crossing calculation, normalised short-term signal energy, voiced-unvoiced detection, windowing and
spectrographic analysis.

Fig. 2. Brief Layout of the modules included in the proposed system.

Fig. 3. Home page of the proposed GUI
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It mainly consists of four display screens. The top screen is used for displaying the amplitude normalised
audio signal with the capabilities of zooming, panning and segment selection. A user has the option to
record a new audio signal using the in-built recorder or open an existing audio file having a .wav extension.
For recording, we can set different sampling frequency and duration. The duration can be varied from 1
sec to 10 sec. There exists a playback button which can be used to make a perceptual judgement about
the audio content and its quality.

The short-time energy and the zero-crossing rate are two basic characteristics of speech signal for
identifying voiced and unvoiced regions. The module has two check-boxes: STE and, ZCR for showing
short-time energy and zero-crossing rate plots in the central display panel. Using different threshold values
for energy and zero-crossing rate, it is possible to detect voiced, unvoiced and silent regions. The different
colour scheme is used for better identification of the plots: yellow for voiced, black for silent and, blue
for unvoiced regions respectively. Generally, speech signal processing is carried out in overlapping
segments of 20-40ms frames where the signal is assumed stationary. The UI takes care of this concept by
having two dropdown lists to select the frame size and frameshift values, which in turn are used for
computing short-time energy and zero-crossing rate.

There are two display panels located at the lower half of the UI. The left side panel shows the
magnitude spectrum of the signal selected in the top panel. It can employ different windowing techniques
by choosing an appropriate window from the dropdown list: rectangular, Hamming, Hanning and Barlette.
Its corresponding spectrum is displayed after clicking button Spectrum. By default rectangular window
is applied. The right side display panel is reserved for displaying spectrogram of the whole signal. It is
equipped with a slider for choosing the frame size ranging from 10 ms to 50 ms in order to make the
spectrogram wideband to narrowband.

The advanced speech processing tools can be accessed by pressing the Advanced button located at
the bottom of the Speech processing UI. User needs to select a segment of the speech signal in the top

Fig. 4. Basic Speech Processing module indicating short time energy in the middle panel and Fourier
magnitude spectrum in the lower-left panel.
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Fig. 5. Speech Processing module indicating voiced-unvoiced detection and autocorrelation

Fig. 6. Advanced Speech Processing module
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displaypanel of Speech processing window before pressing the Advanced button. The advanced GUI is
shown in Fig. 6. This GUI contains signal processing tools like residual signal computation using Linear
Prediction (LP), LP spectrum, formant detection, cepstral analysis using liftering methods, MFCC etc. Each
tool is represented by its respective button located at the left part of the GUI. It has two display panels.
The job of the upper display panel is to show the selected signal, whereas the lower display panel has
multiple purposes. It shows either a processed signal or spectrum of the signal depending upon the button
pressed.

At the bottom part of GUI, there exist four buttons such as Freq Band, VT area Function, Vowel
generation and Normalised error vs LPC. Upon setting the number of filter banks and pressing Freq Band,
lower display-panel shows the triangular filter banks non-linearly spaced in frequency scale. It relates
the linear frequency scale to non-linear mel scale. Clicking VT area Function will produce a pattern that
approximates the variation of the vocal tract from the glottis to lips for the selected signal.

Vowel Generation button leads to a new GUI which can be used for generating vowel signals
artificially. GUI has a list of five vowels when any one of them is selected, and upon pressing the Resonate
button, the corresponding vowel sound is created using a predefined set of formants for that vowel. The
Play button can be used to hear the sound. There is a slider named Add Noise which can be used to
experiment with naturalness of artificially created vowel sound. GUI also provides a user with the
flexibility to set the formants in Hz with their corresponding amplitude and hear the sound thus generated.

2.2 Learner module
The learner module is designed to familiarise users with the various functionalities present in this

application software. The screen 'Home' contains a button named Learn that leads to a dialogue box that
asks for a choice between Speech processing and Stress detection. Choice Speech processing gives a GUI
for speech processing learner module. This GUI gives walk-through of the speech processing module. It
also holds various references to theoretical concepts of different signal processing tools implemented in
this application software. Similarly, Stress Detection choice gives another GUI which contains walk-through
details and references for different machine learning tools implemented in stress detection module.
2.3 Stress detection Module

The GUI for stress detection module is shown in Fig. 7. This module is divided into two sections: (1)
training, (2) detection. Training section provides two machine learning tools: Support Vector Machine
(SVM) and Artificial Neural Network (ANN) to train on the stressed speech database. In the detection
section, the user needs to choose between SVM model or the ANN model before going for stress class
detection. Upon clicking the Start button, the application starts capturing an audio signal. Now, the user
can give audio input and hit the Sense button. The stress module now will sense the stress class and will
display class name inside the lower display panel. In case of a wrong detection, users can choose to add
the test speech signal to the database by providing actual stress class followed by the training process.
Stress detection unit has been trained on a new stress database that contains four stress classes such as
breathy, pathological, emergency and normal. More description of the database is given in Section 2.3.2.

2.3.1  Stress Analysis and Detection
Most of the stress databases that are currently in use contain styled emotion or speech samples with

Lombard effect. Few studies have been reported on stress conditions like emergency, breathy, work-load,
sleep-deprivation and pathological condition. In this work, a new stressed speech database is considered
as described by Amit et al.[11]. The stress detection module has been trained on four different stress classes
like Breathy, Pathology, Normal and Urgency. The MFCC and the Fourier parameters have been used as
the features for training and testing the machine learning models based on SVM and ANN.

2.3.2  IITG-Stress Database
The IITG stress database classifies the stress into four classes as urgency, breathy, pathological and,

normal. It is a new database consisting of seventeen non-professional speakers (3 female, 14 male), from
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Fig. 7. Stress Detection module

different parts of India, took part in recording the database[11]. The speakers belong to the age group of
23 to 30 years, and they are research students of the Indian Institute of Technology Guwahati. Each speaker
uttered five distinct sentences for the four stress cases, respectively. The database has 85 utterances for
each stress class. In total, the database has 340 speech samples. The recording task was performed inside
a closed room with a sampling frequency of 11025 Hz. The sentences used in this work are listed in
Table. 1.

Table 1. Recorded Sentences

1 The fire is spreading

2 Give me some water

3 The storm is coming

4 Call the ambulance

5 Hurry up; there is an accident on the highway

2.3.3  Features Extraction and analysis
Two sets of features: the Fourier parameters (FP) and the Mel frequency cepstral coefficients (MFCC)

are used for analysing the speech signals under stress[13], [12]. MFCCs are a set of features that are widely
used for tasks like emotion recognition, speech recognition and speaker recognition. These features imitate
the perceptual behaviour of the human auditory system. On the other hand, the Fourier parameters are
basically the Discrete Fourier coefficients computed from the Discrete Fourier transform. The Fourier
parameters have been found to be affected by speech production under different stress conditions[13].

In this work, 13-dimensional MFCC, along with its velocity and acceleration parameters, are taken
into consideration. Similarly, in the case of FPs, a 110-dimensional feature vector is taken considering the
symmetry of the Fourier spectrum of the 20ms frame of the speech signal. For each frame of duration 20
ms, a feature vector of length 149 is extracted. The statistical analysis is performed using machine learning
tools like artificial neural network (ANN) and support vector machine (SVM)[14].
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A speaker-independent approach is used for performing the stress classification to understand the
person independence nature of the stress classes. In this approach, the utterances of four speakers are
considered for testing while the utterances of the rest of the speakers are taken for training the machine
learning model. This procedure is followed for five times, and each time a different set of speakers are
grouped for testing while the rest are used for training.

Classification using SVM One-vs-One
To perform the multi-class classification, the "One-vs-one" classification approach is carried out. The

SVC tool, an SVM implementation present inside the Python package Sklearn, has been used for the speech
stress classification. The radial basis function (RBF) has been used as the kernel function. The
hyperparameters 'gamma' and 'C' were not touched upon and were left with their default values 0.076
and 1 respectively.

Classification using Neural Network
A feed-forward neural network with a single hidden layer has been tested in this work. This neural

network is fully connected and consists of 200 neurons in the hidden layer. The 'ReLU' is used as the
activation function of the hidden layer, and 'SoftMax' is used as the activation function of the output layer.
Overall, the network consists of 149, 200 and 4 nodes at the input, the hidden and the output layers,
respectively. The neural network is trained using a fixed size of 200 of epochs.

3. RESULTS
In this work, the multi-class stress classification task has been performed using two different machine

learning tools. The classification results have been computed by following a speaker-independent
approach. Five sets of train and test cluster pairs are created where the speakers present in each test cluster
are independent of the speakers present in train cluster. For every train and test cluster pair, the ratio of
the speech samples is kept at 80 to 20.

Table 2 and Table 3 show the confusion matrices for the SVM and the ANN classifiers respectively. It
can be seen from both the tables that, at the classifier level, both the classifiers are showing a comparable
performance for multi-class stress classification. The classification accuracy is found to be 50% and 49%
for SVM and ANN classifiers, respectively. However, at the feature level, both the classifiers indicate that
the Fourier parameter features show a better overall classification performance than MFCC features.
Fourier parameters with SVM and ANN give 51% and 50% compared to 47% and 44% respectively.

Fig. 8. Accuracy comparison with MFCC
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Table 2. Confusion Matrix of SVM Classification

MFCC features

Breathy Neutral Pathological Urgency

Breathy 42 28 8 22

Neutral 17 52 12 19

Pathological 18 30 30 22

Urgency 22 4 10 64

Average accuracy = 47%

Fourier parameters

Breathy Neutral Pathological Urgency

Breathy 45 27 8 20

Neutral 14 56 17 13

Pathological 13 39 28 20

Urgency 5 13 8 74

Average accuracy = 51%

Combined MFCC and Fourier parameters

Breathy Neutral Pathological Urgency

Breathy 45 25 7 23

Neutral 10 54 19 17

Pathological 13 38 26 23

Urgency 5 7 12 76

Average accuracy = 50%

Table 3. Confusion Matrix of ANN Classification

MFCC features

Breathy Neutral Pathological Urgency

Breathy 49 16 15 20

Neutral 18 35 22 25

Pathological 21 27 32 20

Urgency 14 5 20 61

Average accuracy = 44%

Fourier parameter features

Breathy Neutral Pathological Urgency

Breathy 52 20 13 15

Neutral 12 51 27 10

Pathological 18 38 33 11

Urgency 2 14 18 66

Average accuracy = 50%

Combined MFCC and fourier features

Breathy Neutral Pathological Urgency

Breathy 45 20 13 22

Neutral 8 49 29 14

Pathological 14 35 35 16

Urgency 3 6 18 73

Average accuracy = 49%
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Fig. 9. Accuracy comparison with Fourier parameters

Fig. 10. Accuracy comparison with the combination of MFCC and fourier parameter features.

From another point of view, we looked at the class level performance of the classifiers. Fig. 8 shows
the bar plots for stress level accuracies for the MFCC features using SVM and ANN classifiers. Similarly,
Fig. 9 and Fig. 10 show the bar plots using Fourier parameter and the combination of the MFCC and the
Fourier parameters, respectively. These figures show that the Urgency class has the highest rate of
classification for both the classifiers, whereas the class pathology performed the least. From Table 2 and



100 The Journal of Acoustical Society of India

Abhishek et al.

Table 3, it is seen that the class Urgency shows 76% and 73% accuracy with SVM and ANN respectively
using the combination of MFCC and Fourier parameter features. This performance is the highest of all
classes. The stress classes Breathy and Neutral showed better accuracy with Fourier parameter features
for both the classifiers. The class Pathological gave the least performance in terms of accuracy as the decision
of both the classifiers conflicting with the class Neutral.

4. CONCLUSION
In this work, a real-time speech analysis and stress detection system is designed. The architecture is

designed to be helpful in learning practical aspects of speech signal processing techniques. The learner
module assists the user to familiarise with speech signal processing concepts, algorithms as well as the
application itself. The user can exploit the signal processing module to analyse the speech signal
interactively. It allows both temporal and spectral processing of the signal, which will enable a user to
have a better understanding of the characteristics of the speech signal. As a sample application of the
learned concepts, a speech-based stress detection module is integrated into the GUI. It is capable of
recognising the stress classes like neutral, emergency, breathy and pathological using speech signal in
real-time. The performance of the task of stress detection is evaluated using statistical tools like SVM and
ANN. The analysis showed that Fourier parameters are more effective in characterising and classifying
stress in speech signals than MFCC. This analysis also indicates that the Urgency class is best classified
using speech signal that the stress class Pathology.
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ABSTRACT

This paper proposes a direction-of-arrival (DOA) estimation technique through regression machine
learning model applied on the signals acquired with Uniform Linear Array (ULA) of microphones.
The regression model has been trained using correlation features of the different microphone
signals at the ULA of microphones. The root-mean-square angular error (RMSAE) of the
multivariate-linear and multivariate-curvilinear regression model has been compared with the
standard algorithm i.e. delay and sum (DAS) beam former method and it has been observed that
the regression model outperforms the conventional DAS beam former under different levels of
sensor noise.

1.  INTRODUCTION
Estimation of Direction-of-arrival (DOA) of an acoustic signal finds utility in several applications such

as sensors in robots for smooth and unhindered movement in an unknown environment, automatic camera
steering towards the speaker in a conference room, smart home automation, hands-free mobiles and
hearing aids, speech enhancement in a reverberant environment, tracking and surveillance of aerial/
underwater targets, etc.[1-19]. In the presence of impairments such as sensor noise, ambient noise,
reverberation and interference, the requirements for the DOA of an acoustic source becomes very critical.
Accurate estimation of DOA in the presence of such impairments can be done by employing techniques
such as microphone-array and acoustic vector sensors (AVS)[20-25]. Different algorithms have been
developed for DOA estimation of an acoustic source using signals received at ULA such as time difference
of arrival (TDOA), subspace, beam forming, maximum likelihood, compressed sensing, etc.[26-31].

Readily available high-performance computing devices have popularized the use of machine-learning
techniques in a wide range of application domains. The regression-based machine learning model tackles
this problem by realizing a non-linear relation between the input features and the output DOA. In this
article, DOA has been estimated using regression machine learning models and comparison of results
with delay and sum (DAS) beam forming method is presented for different signal to noise ratio (SNR)
values.

The rest of the article is organized as follows. In Section 2, DAS beam forming with ULA is presented.
Section 3 discusses the DOA estimation using regression models. Details of simulation parameters and
discussion of results are presented in Section 4 and Section 5 concludes the paper.
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2. DELAY AND SUM BEAMFORMING METHOD
A source transmitting an exponential narrow band signal s(t) of wave length  arriving at angle 

with the ordinate. A linear combination of M acoustic sensors (microphones or hydrophones) separated
by a distance d between any two consecutive microphones placed along the abscissahas been used as a
ULA receiver. The received signal at the zth(1< z < M) acoustic sensor can be written as

     exp 2 1 sin ( )z zy t s t j z d n t




 
    

 
(1)

where, nz(t) represents the additive white Gaussian noise (AWGN) at the zth microphone. The received
signal y(t) at the ULA receiver can be expressed in vector form as

         1 2[ ( ) ( )]TMt y t y t y t s t t    y A n (2)

where, A() represents the steering vector of the uniform linear array, n(t) is the AWGN vector and [.]T

denotes the transpose operator. The correlation matrix Cyy (of order M × M) of the received signal vector
y(t) is

       H HE t t     
 yy nC y y A SA C (3)

where [.]H denotes the Hermitian transpose and E[.] denotes the ensemble average. The correlation matrices
S of the signal and that of noise Cn are expressed as

   HE t t 
 

S s s (4)

 [ ( )]HE t tnC n n (5)

Since the noise is 'white', the correlation between any two noise components is zero and all the noise
components have the same variance. Therefore, the noise correlation matrix can be expressed as

2σnC I (6)

where, I is the identity matrix and the noise variance 2 represents the average noise power for zero mean
Gaussian noise. Equation (3) and (6) can be combined to get

    2σH  yyC A SA I (7)

The DOA estimation in DAS beam forming method is done by calculating the signal power,  P() for
each of the possible arrival angles and the estimated DOA angle is the argument of P() that maximizes
P()[32-35].

   ( )HP    yyA C A (8)

where, A() denotes the look-for-direction vector which scans for all possible arrival angles to determine
the direction of arrival angle  i.e. the value of  at which P() becomes maximum.

3. DOA ESTIMATION USING REGRESSION ANALYSIS
The regression model is a machine learning model which estimates the relationship between the input

features (one or more independent variables, ij) and the output value (dependent variable, ). A regression
model is generally used where the prediction values belong to a continuous range and could also be in
floating point. The basic idea behind a regression model is to trace a curve or hyper plane in multi-
dimensional space based on the data points given during the process of training and then mark the new
input point on the same curve to predict the output value [36-39].

The first step is to extract the features from the signals impinging on the microphones of ULA. Then
these features along with the correct angle values are used for training the regression model. The features



104 The Journal of Acoustical Society of India

Wajid et al.

used in training the regression model are correlation co-efficient between the signals captured using the

M microphones of ULA. For Mmicrophones' signals there will be 
 

!
2 ! 2 !

M
M 

 numbers of correlation

efficient. The correlation coefficient measures the linear dependency between two signals. For nth

observation, if each microphone signal has K samples then the correlation coefficient is defined as
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Where, n
im and n

im are the mean and standard deviation of ith microphone signal ( ),n
im n  respectively,

and n
jm and n

jm are the mean and standard deviation of jth microphone signal  n
jm n [1-3]. The superscript

n indexes the specific observation and 1<n<N. The multivariate quadratic regression model can be
expressed as
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which is quadratic polynomial (if = 1) in M numbers of variable, where o, ij, ij,pq and  are the bias
parameter, linear effect parameter, quadratic effect parameter and error term respectively. These
parameters will be determined during the training of the regression model. The above regression model
is linear as the model function is linear in the model parameters. FromN number of observations, we
estimate the regression model parameters
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The error for the nth observation, n=n – ˆn , is the difference between the true value and the predicted
value of the dependent variable. Then ordinary least squares method obtains regression model parameter
estimates which minimize the objective function, which is the sum of squared errors (SSE), with respect
to the model parameters,

2

1

N
n

n

SSE 



 
  (12)

The minimization of this objective function yield the normal equations in the model parameters, which
can be solved to estimate the parameters. If  = 0, then the regression model is named as polynomial
regression of order 1 (PR1) and else if = 1, then the regression model is named as polynomial regression of
order 2 (PR2)

4. SIMULATION PARAMETERS AND RESULTS
It has been assumed that the medium of acoustic wave propagation is quiescent, homogeneous and

isotropic. A ULA (as shown in Fig. 1) consisting of four microphones (point size) with an Omni-directional
beam-pattern that has been placed along the x-axis. The separation d between each of the consecutive
microphones has is 10cm. A point size acoustic source in the far-field, transmitting a 1 kHz sinusoidal
signal which is traveling at the speed of sound i.e. 343 m/s is considered. The relative attenuation of the
signals impinging on the microphones is neglected. All estimates of DOA are considered to be in the



Multivariate quadratic regression based direction estimation of an acoustic source

The Journal of Acoustical Society of India 105

clockwise direction with respect to the positive y-axis. The received signals have a duration of 25 ms with
a sampling rate of 48 kHz.

The noisy training signals vectors have been generated from ULA's received signal vector after addition
of independent zero-mean Gaussian noise (at each microphone)with a range of SNR values. For each DOA,
a set of 1400 independent noisy signal vectors have been used for training the regression model and 600
independent noisy signal vectors have been used for testing the regression model for SNR values from
26dB to 10dB decremented in steps of 4dB.

In the regression models, the 46-ary system has been used, where the possible DOA range from 0° to
90°, with a fixed increment of 2° for training the regression model. Regression models have been trained
with 46-ary system, where the training DOA angles are from 0° to 90°, incremented in steps of 2°. While,
in the 91-ary system, the DOA angles ranging from 0° to 90°, incremented in steps of 1°are used for testing.
The features used for the training of the regression model are the cross-correlation coefficient of the signals
of every two microphones in the array of four microphones. In the process of testing, the model marks
the points for inputs on the curve or hyper plane and predict the output. The performance of the regression
models has been tested with the performance of a standard DOA estimation algorithm known as delay
and sum. DAS method required to search in the space, that searches the maxima of a function for different
DOA. During the simulation, we have searched the space from 0° to 90°, with a fixed increment of 1°.
The performance of the trained model has been evaluated in terms of the root-mean-square angular error
(RMSAE) and average RMSAE ( )RMSAE , the RMSAE is defined as
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N
iiRMSAE

N

 
 



 (13)

where, i is the ith prediction for the true angle  and N is the number of predictions from different
realization of observed noisy vector for each true angle .

The expression of ( )RMSAE is given below
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where, NOA is the number of true angles, and RMSAE () is the root-mean-square angular error at true
angle .

Figures 2 to 6 shows the RMSAE versus the true DOAs for the two regression models (PR1 and PR2)
and DAS for different SNR. For most of the DOA values the regression model gives lower RMSAE value,
also for the end-fire (i.e. DOA close to 90°) the relative performance of regression models improves with
the decrease in the SNR. For broadside (i.e. DOA close to 90°) the DOA performs better than the regression



–3d/2 –d/2 d/2

Fig. 1. Uniform linear array of microphones (circle in indicates the microphone),
the angle  is measured with respect to the positive y-axis and the sound source in the

far-field is represented with a 6-point star symbol.

3d/2
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Fig. 2. RMSAE versus True DOA for the two regression models (PR1 and PR2) and DAS.
The regression models are trained at 26 dB SNR and testing is done 26dB SNR.

Fig. 3. RMSAE versus True DOA for the two regression models (PR1 and PR2) and DAS.
The regression models are trained at 26 dB SNR and testing is done 22 dB SNR.

Fig. 4. RMSAE versus True DOA for the two regression models (PR1 and PR2) and DAS. The regression
models are trained at 26 dB SNR and testing is done 18 dB SNR.
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Fig. 5. RMSAE versus True DOA for the two regression models (PR1 and PR2) and DAS.
The regression models are trained at 26 dB SNR and testing is done 14 dB SNR.

Fig. 6. RMSAE versus True DOA for the two regression models (PR1 and PR2) and DAS.
The regression models are trained at 26 dB SNR and testing is done 10 dB SNR.

models. The average performance for all DOAs is measured using ( )RMSAE , Fig. 7 shows the RMSAE


versus SNR for regression models and DAS. It has been observed that multivariate quadratic regression
model (PR2) is consistently better than the PR1 and DAS for all SNR. However, PR1 is better than the
DAS for the SNR values 22 dB, 18 dB and 14 dB, and DAS is better than PR1 for SNR value of 10 dB.

Also, it has been observed that the testing performed for the regression models is better at the SNR
value 26 dB at which it is trained, as we decrease the SNR the performance falls down, but PR2 still
performs better than PR1 and DAS.

Further, to test the robustness of the regression models we have trained the models with the same
parameters as discussed above but at SNR of value 10 dB instead of 26 dB. The results are shown in Fig.
8 and Table 1. These results show that RMSAE is still lower for the PR1 and PR2 than the DAS beam
former and relatively PR2 is better than PR1.
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Fig. 7. RMSAE


 versus True DOA for the two regression models (PR1 and PR2) and DAS.
The regression models are trained at 26 dB SNR and testing is done for

SNR values 26 dB to 10 dB with a decrement 4 dB.

Fig. 8. RMSAE versus True DOA for the two regression models (PR1 and PR2) and DAS.
The regression models are trained at 10 dB SNR and testing is done 10 dB SNR.

Table 1. RMSAE


 for the two regression models (PR1 and PR2) and DAS. The regression models are trained at 10

dB SNR and testing is done 10 dB SNR.

SNR (dB) Average RMSAE ( RMSAE


) (in degrees)

DAS PR1 PR2

10 3.910 1.273 0.740

5. CONCLUSION
A regression model based approach has been presented for the DOA estimation of an acoustic source

using a ULA. For two different regression models, training and testing have been performed for the DOA
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estimation in the presence of sensor noise. It has been shown that the DOA estimation using the
multivariate quadratic regression model with ULA of Omni-directional microphones perform (in terms
of RMSAE) better than conventional algorithm i.e. DAS beam forming. The main advantage of these
regression models is that they can predict instantaneous DOA and does not require to search for space as
in DAS. Future work can be done on a regression model for range estimation for the near field sources
and it can also include practical issues like reverberation and implementation.
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ABSTRACT

Almost seventy percentage of earth is water, mainly comprising of sea/ocean. These giant oceans
are unexplored because of various reasons. Recent technology advancement can play a crucial
role in unearthing the deep sea. Underwater wireless communication plays a significant role in
understanding marine life, water pollution, oil and gas rig exploration, surveillance, naval tactical
operations for coastal securities, to observe the changes in the underwater environment and many
more. The underwater medium is quite challenging, therefore, realizing even a low data rate, low
range communication system is also very challenging. The objective of this paper is to understand
these challenges associated with underwater communication and some explore some methods to
combat them.

1. INTRODUCTION
Little did Aristotle imagine when he discovered the propagation of acoustic waves through water, in

around 400BC, that it would lead to an era of undersea wireless communications. Underwater Wireless
Sensor Network (UWSN) is a network of unmanned, unwired, heterogeneously distributed sensors/
systems for complete surveillance, sea profiling and many other applications. This completely submerged
system is becoming increasingly important not only for defense but also for other commercial and social
activities[21]. Physical layer link along with the deployment and maintenance of these completely
submerged underwater sensors, limits the range, capacity, applications etc. of these system,

The challenge of the physical layer starts from the selection of carrier waves. Electro-Magnetic waves
get absorbed even at a small distance of less than a meter. Light waves provide another possible carrier
to carry signal in water though they can carry lots of data but then again the range is very minimal, much
lesser than a km. Acoustic waves are the only waves which can travel in water to a reasonable distance.

It was during World War II when underwater acoustic (UWA) communications suddenly became a
requirement. 'Gertrude', the first underwater telephone, was developed in 1945 at Naval Underwater
Systems Centre, USA.

The modern age of UWA communication initiated with the evolution of digital acoustic modulator-
demodulators (modems). The Digital Acoustic Telemetry System (DATS) proposed by the scientists from
Massachusetts Institute of Technology (MIT) and Woods Hole Oceanographic Institution (WHOI) was
the first one of its kind, and, eventually led to the first generation of commercial acoustic modems [2, 3].
The acoustic telemetry modem (ATM-845) was one of the earliest commercially available modems
developed in a collaborative program by WHOI and Datasonics in the late 1980s. It offered a power
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efficient unit capable of 1,200 bit per sec (bps) data transmission and 80 bps data reception. The Datasonics
ATM-850 was an extension to the ATM-845 and was capable of transmitting and receiving data at 2,400
bps. These modems eventually became a basis for many commercial modems. In the last two decades,
several commercial modems along with several research modems[11-17] have been launched, Table 1
presents the brief of the same. But even now the area of underwater acoustic communications is challenging
and has many open research issue and also implementation problems which need attention. Addressing
these challenges will definitely provide a better system for underwater communication.

2. ACOUSTIC WAVES AS CARRIER
Information carrying acoustic waves are pressure waves. Low frequency pressure waves are capable

of propagating over long distances in water, but as the frequency increases, they get attenuated/absorbed
very fast in this aqueous medium. Therefore, low frequency are best candidate acoustic waves to serve
as carrier for communication but these low frequency waves provide very small band width, therefore,
designing any reliable long-range high speed underwater communication systems using acoustic signals
as carrier is quite a challenging task.

To understand better consider a very generic communication scenario of L transmitters and M
receivers. Let sl(.) denotes an independent and identically distributed (IID) input symbol sequence from
the given constellation corresponding to lth transmitter. x(.) denotes the pulses carrying the information.
Correspondingly the signal received at the mth receiver at time instant k is given by,

       
1

,
0

, ( )
L

m m l l m
l n

r k h k n s n x k nZ n k




   (1)

where hm,l (.)is the channel impulse response between the lth transmitter and mth receiver, Z is the
oversampling rate and nm (.) denotes underwater channel noise.

Table 1. Off the shelf Underwater acoustic Modems

Underwater Acoustic Carrier Frequency Bandwidth Maximum Maximum

Modem (kHz) (kHz) Data Rate Distance

Aquatec AQUAModem 1000 9.75 4.5 2kbps 5km

DSPComm Aquacomm Marlin 23 14 480bps 1km

DSPComm AquacommMako 23 14 240bps 100m

Evologics S2CR 48/78USBL 48-78 30 31.2kbps 1km

Evologics S2CR 40/80USBL 38-64 26 27.7kbps 1km

Evologics S2CR 18/34USBL 18-34 16 13.9kbps 3.5km

Evologics S2CR 12/24USBL 13-24 11 9.2kbps 6km

Evologics S2CR 7/17USBL 7-17 10 6.9kbps 8km

AM- OFDM-S 21-27 n/a 1.6kbps 4km

LinkQuest UWM 2200 71.4 35.7 35.7kbps 1km

LinkQuest UWM 3000 10 5 5kbps 3km

LinkQuest UWM 3000H 10 5 5kbps 3km

LinkQuest UWM 4000 17 8.5 8.5kbps 4km

LinkQuest UWM 10000 10 5 5kbps 1km

Teledyne Benthos Atm9xx 18.5,24.5,11.5 5 15.36kbps 6km

Teledyne

Benthos Atm88x 18.5,24.5,11.5 5 15.36kbps 6km

TriTechMicroModem 22 4 40bps 500m
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2.1 Underwater Channel
The propagation of acoustic signal through underwater channel can be modelled as Linear Time

Varying system. This is due to the continuous wave motion and continuous agitation of the reflection
points on the sea surface as well as at uneven bathy. This makes the incident acoustic waves scatter in a
random fashion. The multipath structure, thus formed, is not stationary and changes rapidly resulting in
time-varying impulse response of the channel. Channel structure also depends upon the transmission link
configuration i.e. horizontal or vertical, the ocean depth, type of sea bathy, range, etc. It also depends upon
environmental parameters, sound speed profile, and many more.

In horizontal UWA links, multipath spread extends upto several tens or even hundreds of symbol
intervals, whereas in vertical link spread is much limited. This is much different from terrestrial RF link,
which does not experience such high degree of multipath spread.

The propagating acoustic waves in an UWA channel undergo spreading, refraction, reverberation,
dispersion, absorption scattering, etc. These are mainly frequency-dependent losses and also are function
of ranges. Therefore, for efficient short-range communications one uses different bandwidth than the
corresponding long-range communications. Infact bandwidth available for short range is much more than
long range link. Mathematically, the path loss corresponding to signal of frequency f at a distance l is
given by

  0, ( )k lA l f A l a f

In decibels (dB) it is given as,

010 ( , ) / .10 .10 ( )logA l f A k logl l loga f  (2)

The first term on RHS of (2) symbolizes the spreading losses, k represents the geometry of propagation,
k=2 for spherical spreading and k=1 for cylindrical spreading and the second term provides the absorption
losses. a(f) is the absorption coefficient, according to Thorp's formula it is given as [2],

  2 2 2 2 4 210 0.11 /( 1) 44 /(4100 ) 2.7510 0.003loga f f f f f f     

As the medium is bounded, reflections at the boundaries will give rise to multipath and signal will
reach to the receiver from the sources through different paths. Ray theory provides the skeleton for
determining multipath structure where the overall channel transfer function for P multipath of the channel
can be given as,
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where rp caters for all other losses and P is the time delay corresponding to the pth path.
Further the low speed of sound in water causes severe Doppler distortion that can either be viewed

as a shift in frequency or a scaling of time or both. The effect of Doppler can spread over a few milliseconds
(ms). It results in inter-carrier interference (ICI) also known as frequency spreading. Further systems
involving moving platforms give adverse Doppler shifts resulting from relative motion between the
transmitter and receiver.

A generic channel model is required encompassing all the irregularities, so that one can design ways
to handle them which is very much required to design a robust underwater communication system. The
underwater channel is very dynamic and many a times it is difficult to incorporate all these effect in a
mathematical model. Therefore, experimental data is also used to manifest different stochastic distributions
suitable to model the UWA multipath and Doppler structure.

2.2 Channel Noises
The studies related to UWA noise were initiated at the very time when underwater bell-and-

hydrophone systems came into use in the early 1900's. Though deployed for picking up the bell's sound
to ensure navigational safety, the ship-mounted hydrophones used to pick up background noise as well
which made it difficult to detect the actual signal of interest.



Underwater communications: An open challenge

The Journal of Acoustical Society of India 79

In communication background noise plays a very important role, Traditionally, this channel noise is
assumed to be additive white Gaussian (AWGN). This assumption of Gaussianity is motivated by the
classical central limit theorem (CLT). But noises in an underwater acoustic (UWA) channel often carries
impulsive components from various site-specific sporadic sources such as, biological sources, shipping
traffic, ice-cracking, earthquakes, underwater explosives, off shore oil exploration-production etc.
Impulsive samples from such sources, punctuate the continuous background noise arising from the ocean
waves, surface agitation, turbulence, thermal noise etc. This often leads to a noise probability density
function (pdf) with heavy-tail. Moreover, this infinite variance pdf disobeys the classical CLT. The
underwater acoustic channel noise, thus, can no longer be appropriately approximated by traditional
Gaussian statistics.

The statistical understanding of these noises is very important for designing any solution to combat
this. Based on the estimated density function (pdf) of the noise better receivers can be designed. This
impairments of impulsive noise on signal detection can be mitigated either by designing algorithms that
can suppress the impulsive behavior and/or alter the noise characteristics to a Gaussian-like behavior so
that the standard optimal Gaussian receiver can be reused. One can also develop optimal receivers that
can adapt to an impulsive noise environment so as to recover the transmitted information from the noise
corrupted signal without changing its statistical characteristics.

Billions and billions of noise data samples are available which can be used to understand the noise
statistics, All the open source data form NOAA and Venus site have been used to understand the noise
properties[22,23]. The data has been used to estimate the probability density function using histogram.
Further refinement to these estimates is achieved using Kernel density, orthogonal polynomial based
approaches. The estimated pdf is approximated to popularly known pdfs for better understanding of noise
statistics. Table 2 summaries these findings.

Table 2. Shows the probability of the noise samples collected at various location having the stated statistical

distribution. These noise samples were collected by the hydrophones having different resonant frequency

(mentioned there). Here Very Low (probability<.25), Moderate (probability[.25,.5]),

High (probability [.5,.75]) and very high (probability>.75)

Noise Samples Gaussian Cauchy Middletone Gaussian Gaussian Generalized

Mixture of 2 mixture of 3 Gaussian

Gulf of Mexico (5kHz) [22] Very low Moderate Moderate Moderate High High

Gulf of Mexico (5kHz) [22] Very low Moderate Moderate High High High

Barkley Canyon (128kHz) [23] Very low Moderate Moderate Moderate High Moderate

ClayoquotSlop (128kHz) [23] Very low Moderate Moderate High High Moderate

Indian Ocean (100kHz) Very low Moderate Moderate Moderate Moderate High

The results show that underwater noises cannot be modelled as Gaussian noise with very high
probability and these non-Gaussian noises require special treatment.

A robust and rugged underwater communication system should be able to overcome all the above
mentioned hurdles. In brief the challenges in underwater communication are enormous in number and
are of various genre, therefore, a viable solution is only possible by fusing various signal processing,
information theoretic, wave propagation based algorithms/concepts, to cater for impulsive noise, multipath
spread, Doppler shift etc.

3. UNDERWATER ACOUSTIC COMMUNICATION SYSTEM
The challenges are vast and to handle them very robust techniques are required because the medium

is changing dynamically.
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3.1 Multipath Combating Techniques
The traditional approach for combating ISI (inter symbol interferences) is to use an adaptive equalizer

whose tap length is defined by the degree of multipath compensation.  In a profoundly dispersive UWA
channel, obviously number of equalizer taps inflates. Decision feedback (DFE), Fractionally Spaced
equalizer (FSE) have been suggested and are used but still the dynamic variability of underwater channel
is difficult to model.

Time reversal (TR) is a simpler and effective technique to handle underwater multipath. It provides
spatio-temporal focusing of transmitted energy at the required receiver position. This Spatial focusing
improves signal-to-noise-ratio (SNR) and thus, abates fading. Temporal focusing reduces delay spread of
the channel, which, in turn, minimizes resultant ISI. These double benefits provide beneficial gains of
using Time Reversal (TR) technique in UWA communication.

TR can be implemented at the transmitter in the form of a pre-coder filter, whose impulse response
is time-reversed conjugated version of channel impulse response. Effective/Virtual TR can also be
implemented at receiver having the time reversed version of impulse response as matched filter at receiver
to provide almost similar gain.

Another way to handle this frequency selective underwater channel is by converting the complete
underwater channel into large number of orthogonal flat fading channels. Orthogonal Frequency Division
Multiplexing scheme (OFDM) partitions the given frequency band into constant magnitude sub-bands.
Each sub-band in OFDM techniques is an independent orthogonal sinusoidal carrier. The frequency
selectivity of channel is handled by dividing the broadband data into parallel narrowband channels. But
the time selectivity is an issue. Doppler introduces large ICI, which introduces more practical hurdle.

Many techniques to combat Doppler such as resampling, Phased Lock Loop (PLL) based compensators
etc. have been suggested.

Another novel way is to use frequency sweep signal which are resistant to the detrimental effects of
Doppler. Chirp spread spectrum (CSS) based technique offers robust performance with very simple
matched filtering based decoder. It offers a preferred solution, which can particularly be adapted for the
difficult UWA channel. Recently, OCDM, Orthogonal Chirp division multiplexing, based upon
multiplexing chirp signals within the same time slot and bandwidth has been suggested and they provide
several performance gains.

Compressive sensing based greedy algorithms like Matching pursuit, Orthogonal Matching pursuit,
Compressive Sensing Matching Pursuit, etc. are being tried out to handle this difficult channel.
As the problem quite complex, therefore, one single solution is not sufficient. Various combinations and
new insight are very much required for an optimum solution.

3.2 Noise Handling Techniques
Numerous quantitative and qualitative studies support the Non-Gaussian nature of underwater noises.

This leads to simple fact that unanimously adopted minimum Euclidean distance AWGN receiver does
not perform optimally especially if the impulsive noise component becomes heavy.

This impairment of impulsive noise on signal detection can be mitigated in two ways. One is by
developing signal processing algorithms that can suppress the impulsive behavior and/or alter the noise
characteristics to a Gaussian-like behavior so that standard signal processing techniques, optimal or sub-
optimal in a Gaussian noise environment, can be reused. On the other hand, one can develop optimal or
sub-optimal receivers adapted to an impulsive noise environment so as to recover the transmitted
information from the noise corrupted signal without changing its statistical characteristics.

Under the first category many filters like Median filter, Laplace filter, etc. have been designed for the
purpose of smoothening impulsive noise from a signal[20].  However, many of them filter not only falls
short in its ability to smoothen the impulsive noise, but also might remove some significant portions of
the signal, in case if the noise parameters deviate from the standard.  One class of impulsive noise
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suppression filter is the myriad filter. It is a non-linear filter which provides an ML estimate of the location
of an IID random sequence, called the sample myriad. It is found to be very useful in canceling impulsive
noise while designing wireless receivers particularly when the noise is modeled as Symmetric  stable.

Another class of techniques for mitigating non Gaussian noise is by designing the optimal or sub-
optimal receivers for the prevailing noise conditions. Designing optimal receivers for non Gaussian noise
is highly cumbersome, especially when the underlying noise process is modeled as a stochastic process
but does not possess a closed form PDF. The term 'optimal decision rule' refers to a decision criterion
which minimizes the probability of wrong decision at the receiver. If the transmitted signal is denoted as
s(k), and the received signal is denoted by r(k) as r(k) = s(k) + n(k) in the presence of noise n(k).
let pn(.) be the pdf of the noise. Then the Maximum likelihood (ML) optimum detector decides the
transmitted signal ˆ ( )MLs k  by maximizing

Table 4. Probability of Error for different Noise scenario for M-QAM.
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Table 3. Probability of Error for different Noise scenario for M-PAM.
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Table 5. Decision device for different constellation
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The above expression cannot be simply maximized, it depends on noise statistics and many more
parameters. Table 3 and Table 4 summarize the probability of error in underwater communication for
the prevalent underwater noises for M-PAM and M-QAM constellation. All the decision rules will depend
upon the type of signal constellation used, and noise statistics. Similarly, the MAP decision device is
obtained by maximizing
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The decision device is very much dependent upon noise and signal constellation. Table 5 summarizes
some optimum decision devices for some typical scenarios. It is clear that the optimum decision rule very
much depends upon the noise statistics, different noise pdf results in different decision devices.
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This requires some adaptive model in designing the receiver to combat the noise.

4. RELIABLE WIRELESS UNDERWATER LINK
Along with the crucial and unique issues of underwater acoustic communication, i.e. the impulsive

noise, and, the intensive multipath, there are other deterrent issues like timing and carrier synchronization
in designing a robust underwater communication system. Therefore, in order to establish reliable wireless
UWA link, the system has to cater many other communication impairments also. Handling synchronization
becomes much more challenging in the presence of highly dispersive multipath channel and non Gaussian
noise.  Many algorithms have been suggested for the same.

Channel error correction coding is another important block of this complete reliable system. Many
channel coding methods are borrowed from RF communication systems and used here to get required
performance. The block diagram of the complete system to provide an acoustic underwater communication
link is shown in figure.

Table 6. Results of the experiment conducted in Bay or Bengal near Chennai.

Data rate (symbols/s) Distance (km) Bit error rate Modulation

100 3 0 BPSK

500 3 0 BPSK

3000 3 0 BPSK/QPSK

3000 5 0 8PSK

4000 5 .0025 QPSK

This system has been realized and tested in the fields[24]. It has been designed to achieve the maximum
data rate of 5000 bits/second (with Constellation of BPSK/QPSK) for a range if 5km. The system was
tested at Chennai, India in Jan 2018 using two moored fishing boats. The transducers were lowered using
cables from the boats which are kept stationary.  The summary of the results is given table 6.

Fig. 1. Block Diagram of complete Communication system
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5. CONCLUSIONS
The practical UWA channels is quite complex, the techniques have been suggested to combat the

combined effect of impulsive noise, multipath spread, Doppler, etc. in real time. But the dynamic nature
of Oceans/Sea makes underwater acoustic system more complex. Non-stationary, non-Gaussian
underwater noises requires dynamic learning of environment which is very much essential for a viable
solution. Recent advances in Artificial Intelligence and big data have opened new opportunities here also,
which can be used to design smart and reliable system.
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